The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite s...The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.展开更多
Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to id...Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a...Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model...In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.展开更多
The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity da...The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.展开更多
We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous posit...We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.展开更多
In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geomet...In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geometric center of the rupture region and the elliptical centerline of the aftershock region. The result shows, precursor anomalies gradually increased about 2 years before the Wenchuan earthquake. The ratio of abnormal items is greater than 25% in the near source area (about twice the source scale) and 17%-24% in the remote area (about 3-5 times the source scale). There are three different stages of spatiotemporal evolution of precursory anomalies. During the α stage (including α_1 and α_2,between 700 to 3000 days before the main earthquake),the anomalies are mainly distributed in the southwest and northwest area of the Wenchuan aftershocks area. It is shown that the precursors of the far source region and the near source area have the characteristics of outward expansion. During the β stage (between 300 to 700 days before the main earthquake), the anomalies are distributed in the southwest and northern region of the aftershock region, showing a large range of anomalies. During the γ stage (including γ_1 and γ_2, 300 days before the main earthquake),the range of anomaly distribution is wide,and the anomalies are distributed in the southwest and northeast of the aftershock area. The anomalies converged to epicenter (γ_1) in the far source region and expand outwards (γ_2) in the near source region. Results of the experimental study and mechanical analysis of earthquake preparation process indicate that the three-stage characteristics of precursory anomalies in the process of earthquake preparation may be controlled by the seismogenic body,which is a form of expression in the process of earthquake preparation and a universal featureduring the earthquake preparation process,which has a certain guiding role in earthquake prediction.展开更多
The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from...The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.展开更多
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earth...An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage t...Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.展开更多
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and...The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.展开更多
The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes...The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.展开更多
An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expans...An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.展开更多
On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan platea...On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.展开更多
On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresp...On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.展开更多
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
基金supported by the State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration(CEA) (no. LED2010A02,LED2008A06)
文摘The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.
文摘Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supported by the National Natural Science Foundation of China(42322702,42177131)。
文摘Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
基金supported by the National Natural Science Foundation of China (Nos.41974068 and 41574040)Key International S&T Cooperation Project of P.R.China (No.2015DFA21260)。
文摘In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.
基金financially supported by the National Natural Science Foundation of China (40574012,40374031)Key Project of the National Science & Technology Pillar Program in the Eleventh Five-year Plan(2006BAC01B02-02)Monitoring Project of China Earthquake Administration (201210)
文摘The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.
基金supported by the National Natural Science Foundation of China(40974012)the Special Foundation for Seismic Research(200808080)the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201156063)
文摘We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.
基金funded by the Spark Program of Earthquake Sciences(XH17048)the Task-oriented Earthquake Tracing Project of China Earthquake Administration(2018010505)
文摘In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geometric center of the rupture region and the elliptical centerline of the aftershock region. The result shows, precursor anomalies gradually increased about 2 years before the Wenchuan earthquake. The ratio of abnormal items is greater than 25% in the near source area (about twice the source scale) and 17%-24% in the remote area (about 3-5 times the source scale). There are three different stages of spatiotemporal evolution of precursory anomalies. During the α stage (including α_1 and α_2,between 700 to 3000 days before the main earthquake),the anomalies are mainly distributed in the southwest and northwest area of the Wenchuan aftershocks area. It is shown that the precursors of the far source region and the near source area have the characteristics of outward expansion. During the β stage (between 300 to 700 days before the main earthquake), the anomalies are distributed in the southwest and northern region of the aftershock region, showing a large range of anomalies. During the γ stage (including γ_1 and γ_2, 300 days before the main earthquake),the range of anomaly distribution is wide,and the anomalies are distributed in the southwest and northeast of the aftershock area. The anomalies converged to epicenter (γ_1) in the far source region and expand outwards (γ_2) in the near source region. Results of the experimental study and mechanical analysis of earthquake preparation process indicate that the three-stage characteristics of precursory anomalies in the process of earthquake preparation may be controlled by the seismogenic body,which is a form of expression in the process of earthquake preparation and a universal featureduring the earthquake preparation process,which has a certain guiding role in earthquake prediction.
基金supported by the Special Earthquake Research Project Granted by the China Earthquake Administration(201208006)the National Natural Science Foundation of China(41174083,40974062)
文摘The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.
文摘An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金National Natural Science Foundation of China Under Grant No. 90715032 and 50808105National Basic Research Program of China Under Grant No. 2007CB714203
文摘Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.
基金NSFC Under Grant No. 90715038MOST of China Under Grant No. 2006BAC13B02
文摘The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.
基金Partially the Project 2007CB714205 of the National Basic Research Program of China
文摘The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.
基金National Natural Science Foundation Under Grant No.50578118
文摘An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.
基金supported by the National Basic Research Program of China(Grant No.2004CB418401)National Science Foundation of China(grant No.40841007)
文摘On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending rightlateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.
基金National Natural Science Foundation of China Under Grant No.50638010 the Foundation of Ministry of Education for Innovation Group Under Grant No. IRT0518
文摘On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.