Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable em...Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable emergy flow,non-renewable resources,imported emergy,exported emergy,waste emergy,and total emergy during the period of 1978-2007,the performance of Gansu eco-economic system was analyzed. The results indicated that the renewable emergy flow within the province basically remained steady state which was estimated at 2.99×1022 solar emjoules (sej) from 1978 to 2007. The imported emergy and exported emergy were estimated at 3.75×1017 sej and 2.99×1020 sej in 1978 and increased to 1.07×1022 sej and 1.44×1022 sej respectively in 2007. The nonrenewable emergy flow was estimated at 1.62×1022 sej and increased to 1.85×1023 sej,with annual growth rate of 8.7%,while the estimated total emergy was 4.58×1022 sej in 1978 and increased to 2.11×1023 sej in 2007,with annual growth rate of 5.41%. Our results indicate a deteriorate situation between economic development and environmental protection in the region. The rapid economic growth in the past thirty years was based on a great consumption of nonrenewable resource and caused continuous decrease in the capacity of sustainable development. The environmental loading ratio was 0.53 in 1978,increased to 6.06 in 2007,indicating a rapid degradation of the regional environment quality. We calculated that the actual population was 1.53 times the renewable resource population in 1978,increased to 7.06 times in 2007. During the period of 1978-2007,the emergy rose from 2.45×1015 sej/(capita·a) to 8.07×1015 sej/(capita·a). Our analysis revealed that the emergy density presented a trend of gradual increase,and then the emergy currency ratio in Gansu decreased from 7.08×1013 sej/Chinese Yuan to 7.82×1012 sej/Chinese Yuan.展开更多
The mountainous forests in arid regions, being sensitive to climate change, are one of the key research topics related to the mechanism of interaction between climate and the terrestrial ecosystem. In this study, the ...The mountainous forests in arid regions, being sensitive to climate change, are one of the key research topics related to the mechanism of interaction between climate and the terrestrial ecosystem. In this study, the spatial distribution of a mid-mountain forest and its environmental factors were investigated by using a combination of remote sensing technology, field survey, climate indices and soil nutrient analysis in the Sangong River watershed of the northern Tianshan Mountains. The forest (Picea schrenkiana) was distributed between 1,510 and 2,720 m asl. Tree height and diameter at breast height (DBH) exhibited a bi-modal pattern with increasing elevation, and rested at 2,450 and 2,250 m asl, respectively. The two maxima of DBH appeared at 2,000 and 2,550 m asl, and the taller trees were observed at 2,100 and 2,600 m asl. For the annual mean temperature, the difference was approximately 5.8℃ between the lowest and the highest limits of the forest, and the average decreasing rates per hundred meters were 0.4g℃ and 0.55℃ with increasing altitude between 1,500 and 2,000 m asl and above 2,000 m asl, respec- tively. The annual precipitation in the forest zone first increased and then decreased with the increase of altitude, and the maximum value was at 2,000 m asl. For per hundred meters, the annual precipitation increased with the rate of 31 mm between 1,500 and 2,000 m asl and decreased by 7.8 mm above 2,000 m asl. The SOM, TN and TP were high between 2,000 and 2,700 m asl and low at the lower and upper forest limits. The minimum CaCO3 con- centration, pH value and EC coincided with the maximum precipitation belt at 2,000 m asl. The SOM, TN and TP were high in the topsoil (0-10 cm) and differed significantly from the values observed in the deep soil layers (〉10 cm). The soil nutrients exhibited spatial heterogeneity and higher aggregation in the topsoil. In conclusion, soil and climate are closely related to each other, working synergistically to determine the development and spatial distribution of the mid-mountain forest in the study area. The order of the importance of environmental factors to forest development in this study is as follows: soil nutrients〉precipitation〉elevation〉temperature.展开更多
This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). O...This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.展开更多
基金funded by the Natural Science Foundation of China (40871061)Initial Fund for Doctors of Institute of Applied Ecology at Chinese Academy of Sciences (Y0SBS161S3)+2 种基金100 Talents Program of the Chinese Academy of Sciences (08YBR111SS)Shenyang Bureau of Science and Technology (1091147-9-00)Natural Science Foundation of Liaoning province (20092078)
文摘Taking Gansu province as a model case,this study provides an integrated analysis on the eco-economic system of arid and semi-arid region based on emergy synthesis theory. Through calculating the values of renewable emergy flow,non-renewable resources,imported emergy,exported emergy,waste emergy,and total emergy during the period of 1978-2007,the performance of Gansu eco-economic system was analyzed. The results indicated that the renewable emergy flow within the province basically remained steady state which was estimated at 2.99×1022 solar emjoules (sej) from 1978 to 2007. The imported emergy and exported emergy were estimated at 3.75×1017 sej and 2.99×1020 sej in 1978 and increased to 1.07×1022 sej and 1.44×1022 sej respectively in 2007. The nonrenewable emergy flow was estimated at 1.62×1022 sej and increased to 1.85×1023 sej,with annual growth rate of 8.7%,while the estimated total emergy was 4.58×1022 sej in 1978 and increased to 2.11×1023 sej in 2007,with annual growth rate of 5.41%. Our results indicate a deteriorate situation between economic development and environmental protection in the region. The rapid economic growth in the past thirty years was based on a great consumption of nonrenewable resource and caused continuous decrease in the capacity of sustainable development. The environmental loading ratio was 0.53 in 1978,increased to 6.06 in 2007,indicating a rapid degradation of the regional environment quality. We calculated that the actual population was 1.53 times the renewable resource population in 1978,increased to 7.06 times in 2007. During the period of 1978-2007,the emergy rose from 2.45×1015 sej/(capita·a) to 8.07×1015 sej/(capita·a). Our analysis revealed that the emergy density presented a trend of gradual increase,and then the emergy currency ratio in Gansu decreased from 7.08×1013 sej/Chinese Yuan to 7.82×1012 sej/Chinese Yuan.
基金funded by the National Natural Science Foundation of China (41271126)the Ph.D. Research Foundation of Guizhou Normal Universitythe Science and Technology Foundation of Guizhou Province (J[2014]2126)
文摘The mountainous forests in arid regions, being sensitive to climate change, are one of the key research topics related to the mechanism of interaction between climate and the terrestrial ecosystem. In this study, the spatial distribution of a mid-mountain forest and its environmental factors were investigated by using a combination of remote sensing technology, field survey, climate indices and soil nutrient analysis in the Sangong River watershed of the northern Tianshan Mountains. The forest (Picea schrenkiana) was distributed between 1,510 and 2,720 m asl. Tree height and diameter at breast height (DBH) exhibited a bi-modal pattern with increasing elevation, and rested at 2,450 and 2,250 m asl, respectively. The two maxima of DBH appeared at 2,000 and 2,550 m asl, and the taller trees were observed at 2,100 and 2,600 m asl. For the annual mean temperature, the difference was approximately 5.8℃ between the lowest and the highest limits of the forest, and the average decreasing rates per hundred meters were 0.4g℃ and 0.55℃ with increasing altitude between 1,500 and 2,000 m asl and above 2,000 m asl, respec- tively. The annual precipitation in the forest zone first increased and then decreased with the increase of altitude, and the maximum value was at 2,000 m asl. For per hundred meters, the annual precipitation increased with the rate of 31 mm between 1,500 and 2,000 m asl and decreased by 7.8 mm above 2,000 m asl. The SOM, TN and TP were high between 2,000 and 2,700 m asl and low at the lower and upper forest limits. The minimum CaCO3 con- centration, pH value and EC coincided with the maximum precipitation belt at 2,000 m asl. The SOM, TN and TP were high in the topsoil (0-10 cm) and differed significantly from the values observed in the deep soil layers (〉10 cm). The soil nutrients exhibited spatial heterogeneity and higher aggregation in the topsoil. In conclusion, soil and climate are closely related to each other, working synergistically to determine the development and spatial distribution of the mid-mountain forest in the study area. The order of the importance of environmental factors to forest development in this study is as follows: soil nutrients〉precipitation〉elevation〉temperature.
基金supported by National Basic Research Program of China (Grant No. 2010CB950202)National Natural Science Foundation of China (Grant Nos. 40971056 and 41021091)Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2009-82)
文摘This study analyzed the temporal precipitation variations in the arid Central Asia (ACA) and their regional differences during 1930-2009 using monthly gridded precipitation from the Climatic Research Unit (CRU). Our results showed that the annual precipitation in this westerly circulation dominated arid region is generally increasing during the past 80 years, with an apparent increasing trend (0.7 mm/10 a) in winter. The precipitation variations in ACA also differ regionally, which can be divided into five distinct subregions (Ⅰ West Kazakhstan region, Ⅱ East Kazakhstan region, ⅢCentral Asia Plains region, Ⅳ Kyrgyzstan region, and V Iran Plateau region). The annual precipitation falls fairly even on all seasons in the two northern subregions (regions Ⅰ and Ⅱ, approximately north of 45°N), whereas the annual precipitation is falling mainly on winter and spring (accounting for up to 80% of the annual total precipitation) in the three southern subregions. The annual precipitation is increasing on all subregions except the southwestern ACA (subregion Ⅴ) during the past 80 years. A significant increase in precipitation appeared in subregions Ⅰ and Ⅲ. The long-term trends in annual precipitation in all subregions are determined mainly by trends in winter precipitation. Additionally, the precipitation in ACA has significant interannual variations. The 2-3-year cycle is identified in all subregions, while the 5-6-year cycle is also found in the three southern subregions. Besides the inter-annual variations, there were 3-4 episodic precipitation variations in all subregions, with the latest episodic change that started in the mid- to late 1970s. The precipitations in most of the study regions are fast increasing since the late 1970s. Overall, the responses of ACA precipitation to global warming are complicated. The variations of westerly circulation are likely the major factors that influence the precipitation variations in the study region.