This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feas...This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.展开更多
In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by ...In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by the constrained augmented Lagrangian optimization method with well data and seismic time-lapse data.By transforming the constrained optimization problem in an unconstrained one,the saddle point problem can be solved by Uzawas algorithms with operator splitting scheme,which is based on the essence of binary level set method.Both the simple and complicated numerical examples demonstrate that the given algorithms are stable and efficient and the absolute permeability can be satisfactorily recovered.展开更多
基金supported by the National Key Research and Development Project(Grant No.2020YFA0709800)NSFC(Grant No.12071289)+4 种基金Shanghai Municipal Science and Technology Major Project(2021SHZDZX0102)supported by the National Key R&D Program of China(2020YFA0712000)NSFC(under grant numbers 11822111,11688101)the science challenge project(No.TZ2018001)youth innovation promotion association(CAS).
文摘This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method.
基金The author thanks to his supervisor Prof.Lin Qun(Institute of Computational Mathematics,Chinese Academy of Sciences),Prof.Tai Xuecheng,Prof.S.I.Aanonsen(CIPR,University of Bergen)for useful suggestions.This work is also supported by China NSFC(NO.11101084)and NSFC(NO.11101081).
文摘In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by the constrained augmented Lagrangian optimization method with well data and seismic time-lapse data.By transforming the constrained optimization problem in an unconstrained one,the saddle point problem can be solved by Uzawas algorithms with operator splitting scheme,which is based on the essence of binary level set method.Both the simple and complicated numerical examples demonstrate that the given algorithms are stable and efficient and the absolute permeability can be satisfactorily recovered.