In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are foun...In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.展开更多
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv...The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.展开更多
This paper develops the boundary element method, the authors employ two-layered earth Green 's functions as the weighting functions of residual and derive boundary integral equations. The forward problems of point...This paper develops the boundary element method, the authors employ two-layered earth Green 's functions as the weighting functions of residual and derive boundary integral equations. The forward problems of point sources on 2 - D and 3-D structures with an influencing cover are solved by this method. The results show that this method markedly improves the original boundary element method. The features of the improved method are greater numerical accuracy and much smaller systems of equations and thus considerable savings for the storage capacity of computers, allowing us to solve the above problems with only ordinary microcomputers. The results in this paper extend the scope of applying the boundary element method while using electrical methods for geophysical prospecting.展开更多
Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water...Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.展开更多
In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we i...In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.展开更多
The structural, electronic, and elastic properties of ZnSe1-xSx for the zinc blende structures have been studied by using the density functional theory. The calculations were performed using the plane wave pseudopoten...The structural, electronic, and elastic properties of ZnSe1-xSx for the zinc blende structures have been studied by using the density functional theory. The calculations were performed using the plane wave pseudopotential method, as implemented in Quantum ESPRESSO. The exchange-correlation potential is treated with the local density approximation pz-LDA for these properties. Moreover, LDA+U approximation is employed to treat the "d" orbital electrons properly. A comparative study of the band gap calculated within both LDA and LDA+U schemes is presented. The analysis of results show considerable improvement in the calculation of band gap. The inclusion of compositional disorder increases the values of all elastic constants. In this study, it is found that elastic constants C11, C12, and C44 are mainly influenced by the compositional disorder. The obtained results are in good agreement with literature.展开更多
Batteries are the most widely used energy storage devices, and the lithiumion battery is the most heavily commercialized and most widely used battery type in the industry. However, the current rapid development of soc...Batteries are the most widely used energy storage devices, and the lithiumion battery is the most heavily commercialized and most widely used battery type in the industry. However, the current rapid development of society requires a major advancement in battery materials to achieve high capacity,long life cycle, low cost, and reliable safety. Therefore, many new efficient energy storage materials and battery systems are being developed and explored, and their working mechanisms must be clearly understood before industrial application. In recent years, density functional theory (DFT) has been employed in the energy storage field and has made significant contributions to the understanding of electrochemical reaction mechanisms and to virtual screening of promising energy storage materials. In this review,the applications of DFT to battery materials are summarized and exemplified by some representative and up-to-date studies in the literature. The main focuses in this review include the following:1) structural stability estimation by cohesive energy, formation energy, Gibbs free energy, and phonon dispersion spectra calculations;2) the Gibbs free energy calculations for electrochemical reactions, corresponding open-circuit voltage, and theoretical capacity predictions of batteries;3) the analyses of molecule orbitals, band structures, density of states (DOS), and charge distribution of battery materials;4) ion transport kinetics in battery materials;5) simulations of adsorption processes. We conclude the review with the discussion of the assessments and validation of the popular functionals against several benchmarks, and a few suggestions have been given for the selection of density functionals for battery material systems.展开更多
The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the num...The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the numerical calculation of GF for devices with arbitrary shapes and multi-terminal configurations. These algorithms can be used to calculate the specified blocks related to the transmission, the diagonals needed by the local density of states calculation, and the full matrix of GF, to meet different calculation levels. In addition, the algorithms for the non-equilibrium occupation and current flow are also given. All these algorithms are described using the basic theory of GF, based on a new partition strategy of the computational area. We apply these algorithms to the tight-binding graphene lattice to manifest their stability and efficiency. We also discuss the physics of the calculation results.展开更多
Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the dive...Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects &ore chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non- metal atom adsorption, the magnetic moment could be changed from 2 ~tB to 0, 1, 2, and 3 ~tB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications.展开更多
This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu a...This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu atom prefers to occupy the apical site when N ≤ 9 and for the clusters with N = 10, the Cu atom starts to encapsulate in the cage. The CuNi7 and CuNi9 are magic clusters. The magnetism correlates closely with the symmetry of the clusters. For these clusters, the charge tends to transfer from the nickel atoms to the copper atoms. It finds that the doping of Cu atom decreases the stability of pure NiN clusters.展开更多
In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some dec...In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some decay property due to the parabolicity. Based on detailed analysis on the Green function of the system, the pointwise estimates of the solutions are obtained, from which the generalized Huygens’ principle is shown.展开更多
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with Vlowk technique and applied to the Green's function calculat...The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with Vlowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.展开更多
We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Ja...We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Jahn-Teller effect, whereas the triply-charged singlet and neutral quartet have similar stable geometries of Ih symmetry. The infrared and Raman spectra may provide a way to determine various charge states of this molecule with the same symmetry. Based on our systematical calculations, we suggest additional experimental measurements in order to determine the appropriate functional with great confidence, which should be important in the research for future quantum dot devices.展开更多
基金the Higher Education Commission of Pakistan for partial funding.
文摘In this study the pseudo-potential method is used to investigate the structural, electronic, and thermodynamic proper- ties of ZnOl_xSx semiconductor materials. The results show that the electronic properties are found to be improved when calculated by using LDA ~ U functional as compared with local density approximation (LDA). At various concentrations the ground-state properties are determined for bulk materials ZnO, ZnS, and their tertiary alloys in cubic zinc-blende phase. From the results, a minor difference is observed between the lattice parameters from Vegard's law and other calculated results, which may be due to the large mismatch between lattice parameters of binary compounds ZnO and ZnS. A small deviation in the bulk modulus from linear concentration dependence is also observed for each of these alloys. The ther- modynamic properties, including the phonon contribution to Helmholtz free energy △F, phonon contribution to internal energy △E, and specific iheat at constant-volume Cv, are calculated within quasi-harmonic approximation based on the calculated phonon dispersion relations.
文摘The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.
文摘This paper develops the boundary element method, the authors employ two-layered earth Green 's functions as the weighting functions of residual and derive boundary integral equations. The forward problems of point sources on 2 - D and 3-D structures with an influencing cover are solved by this method. The results show that this method markedly improves the original boundary element method. The features of the improved method are greater numerical accuracy and much smaller systems of equations and thus considerable savings for the storage capacity of computers, allowing us to solve the above problems with only ordinary microcomputers. The results in this paper extend the scope of applying the boundary element method while using electrical methods for geophysical prospecting.
基金supported by the Ministry of Science and Technology of China(No.2017YFA0402800)the National Natural Science and Technology of China(No.91541102 and No.51476168)+2 种基金the support by Chinese Academy of Sciences for Senior International Scientists within President’s International Fellowship Initiative(PIFI)programthe financial support during his Ph.D.research stay at Bielefeld UniversityThe Moroccan institute of IRESEN is acknowledged for the financial support(Innowind13 Nanolubricant)
文摘Thin cuprous oxide films have been prepared by chemical vapor deposition(pulsed spray evaporation-chemical vapor deposition)method without post-treatment.The synthesis of cuprous oxide was produced by applying a water strategy effect.Then,the effect of water on the morphology,topology,structure,optical properties and surface composition of the obtained films has been comprehensively investigated.The results reveal that a pure phase of Cu2O was obtained.The introduction of a small quantity of water in the liquid feedstock lowers the band gap energy from 2.16 eV to 2.04 eV.This finding was mainly related to the decrease of crystallite size due to the effect of water.The topology analyses,by using atomic force microscope,also revealed that surface roughness decreases with water addition,namely more uniform covered surface.Moreover,theoretical calculations based on density functional theory method were performed to understand the adsorption and reaction behaviors of water and ethanol on the Cu2O thin film surface.Formation mechanism of the Cu2O thin film was also suggested and discussed.
基金supported by National Science Foundation of China(11071162)Shanghai Municipal Natural Science Foundation (09ZR1413500)
文摘In this paper, we will introduce how to apply Green's function method to get the pointwise estimates for the solutions of Cauchy problem of nonlinear evolution equations with dissipative structure. First of all, we introduce the pointwise estimates of the time-asymptotic shape of the solutions of the isentropic Navier-Stokes equations and show to exhibit the generalized Huygen's principle. Then, for other nonlinear dissipative evolution equations, we will only introduce the result and give some brief explanations. Our approach is based on the detailed analysis of the Green's function of the linearized system and micro-local analysis, such as frequency decomposition and so on.
文摘The structural, electronic, and elastic properties of ZnSe1-xSx for the zinc blende structures have been studied by using the density functional theory. The calculations were performed using the plane wave pseudopotential method, as implemented in Quantum ESPRESSO. The exchange-correlation potential is treated with the local density approximation pz-LDA for these properties. Moreover, LDA+U approximation is employed to treat the "d" orbital electrons properly. A comparative study of the band gap calculated within both LDA and LDA+U schemes is presented. The analysis of results show considerable improvement in the calculation of band gap. The inclusion of compositional disorder increases the values of all elastic constants. In this study, it is found that elastic constants C11, C12, and C44 are mainly influenced by the compositional disorder. The obtained results are in good agreement with literature.
基金supported by the Excel ent Dissertation Cultivation Funds of Wuhan University of Technology(2018-YS-013)
文摘Batteries are the most widely used energy storage devices, and the lithiumion battery is the most heavily commercialized and most widely used battery type in the industry. However, the current rapid development of society requires a major advancement in battery materials to achieve high capacity,long life cycle, low cost, and reliable safety. Therefore, many new efficient energy storage materials and battery systems are being developed and explored, and their working mechanisms must be clearly understood before industrial application. In recent years, density functional theory (DFT) has been employed in the energy storage field and has made significant contributions to the understanding of electrochemical reaction mechanisms and to virtual screening of promising energy storage materials. In this review,the applications of DFT to battery materials are summarized and exemplified by some representative and up-to-date studies in the literature. The main focuses in this review include the following:1) structural stability estimation by cohesive energy, formation energy, Gibbs free energy, and phonon dispersion spectra calculations;2) the Gibbs free energy calculations for electrochemical reactions, corresponding open-circuit voltage, and theoretical capacity predictions of batteries;3) the analyses of molecule orbitals, band structures, density of states (DOS), and charge distribution of battery materials;4) ion transport kinetics in battery materials;5) simulations of adsorption processes. We conclude the review with the discussion of the assessments and validation of the popular functionals against several benchmarks, and a few suggestions have been given for the selection of density functionals for battery material systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10904040 and 10974058)
文摘The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the numerical calculation of GF for devices with arbitrary shapes and multi-terminal configurations. These algorithms can be used to calculate the specified blocks related to the transmission, the diagonals needed by the local density of states calculation, and the full matrix of GF, to meet different calculation levels. In addition, the algorithms for the non-equilibrium occupation and current flow are also given. All these algorithms are described using the basic theory of GF, based on a new partition strategy of the computational area. We apply these algorithms to the tight-binding graphene lattice to manifest their stability and efficiency. We also discuss the physics of the calculation results.
基金Project supported by the Research Fund of Taishan Scholar,China(Grant No.TSHW20101004)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010AM027)the National Natural Science Foundation of China(Grant No.11074100)
文摘Successful synthesis of single iron-phthalocyanie (FePc) framework layer on substrate and its transferrable properties open the door for decorating the separately distributed transition metals for exploring the diverse properties. We have studied the effects of chemical modification on two-dimensional FePc organometallic framework with density functional theory. For simplicity, the non-metal atoms with variant valence electrons are used as prototypes to estimate the effects &ore chemical modifications with different functional groups. The thermo-stabilities of the non-metal atom decorated complex sheet materials have been estimated by the first-principles constant energy molecular dynamic simulations. Upon the non- metal atom adsorption, the magnetic moment could be changed from 2 ~tB to 0, 1, 2, and 3 ~tB per unit cell for the case of tetra-, penta-, hexa-, and hepta-valent non-metal modifications, respectively, showing interesting promise to tailor its magnetic properties for potential applications.
文摘This paper obtains the lowest-energy geometric structures and the electronic and magnetic properties of small CuNiN clusters by using all-electron density functional theory. The calculated results reveal that the Cu atom prefers to occupy the apical site when N ≤ 9 and for the clusters with N = 10, the Cu atom starts to encapsulate in the cage. The CuNi7 and CuNi9 are magic clusters. The magnetism correlates closely with the symmetry of the clusters. For these clusters, the charge tends to transfer from the nickel atoms to the copper atoms. It finds that the doping of Cu atom decreases the stability of pure NiN clusters.
基金Xingwen Hao's research was supported in part by National Natural Science Foundation of China (10571120 and 10971135)Shanghai Shuguang Project (06SG11)+1 种基金the Program for New Century Excellent Talents of Chinese Ministry of Education (NCET-07-0546) Doctorial Foundation of Weifang University (2011BS11)
文摘In this paper, we study the linear thermo-visco-elastic system in one-dimensional space variable. The mathematical model is a hyperbolic-parabolic partial differential system. The solutions of the system show some decay property due to the parabolicity. Based on detailed analysis on the Green function of the system, the pointwise estimates of the solutions are obtained, from which the generalized Huygens’ principle is shown.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB834402)the National Natural Science Foundation of China(Grant Nos.11235001,11320101004 and 11575007)
文摘The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with Vlowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
基金Project supported by the Ministry of Science and Technology (Grant No 2001CB610508), the Ministry of Education of China, and the National Natural Science Foundation of China (Grant No 10314010).
文摘We present results of first-principle study for both neutral and anionic onion-like [As@Ni12@As20]. The groundstates of singly-charged and doubly-charged anions deviate from ideal Ih symmetrical geometry because of Jahn-Teller effect, whereas the triply-charged singlet and neutral quartet have similar stable geometries of Ih symmetry. The infrared and Raman spectra may provide a way to determine various charge states of this molecule with the same symmetry. Based on our systematical calculations, we suggest additional experimental measurements in order to determine the appropriate functional with great confidence, which should be important in the research for future quantum dot devices.