期刊文献+
共找到54,411篇文章
< 1 2 250 >
每页显示 20 50 100
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
1
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
2
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic genetic algorithm
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
3
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Tuning PID Parameters Based on a Combination of the Expert System and the Improved Genetic Algorithms 被引量:3
4
作者 Zuo Xin Zhang Junfeng Luo Xionglin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期71-76,共6页
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic... a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness. 展开更多
关键词 PID parameters tuning orthogonal experiment method genetic algorithm expert system
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
5
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Intelligent Design of High Strength and High Conductivity Copper Alloys Using Machine Learning Assisted by Genetic Algor
6
作者 Parth Khandelwal Harshit Indranil Manna 《Computers, Materials & Continua》 SCIE EI 2024年第4期1727-1755,共29页
Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exer... Metallic alloys for a given application are usually designed to achieve the desired properties by devising experimentsbased on experience, thermodynamic and kinetic principles, and various modeling and simulation exercises.However, the influence of process parameters and material properties is often non-linear and non-colligative. Inrecent years, machine learning (ML) has emerged as a promising tool to dealwith the complex interrelation betweencomposition, properties, and process parameters to facilitate accelerated discovery and development of new alloysand functionalities. In this study, we adopt an ML-based approach, coupled with genetic algorithm (GA) principles,to design novel copper alloys for achieving seemingly contradictory targets of high strength and high electricalconductivity. Initially, we establish a correlation between the alloy composition (binary to multi-component) andthe target properties, namely, electrical conductivity and mechanical strength. Catboost, an ML model coupledwith GA, was used for this task. The accuracy of the model was above 93.5%. Next, for obtaining the optimizedcompositions the outputs fromthe initial model were refined by combining the concepts of data augmentation andPareto front. Finally, the ultimate objective of predicting the target composition that would deliver the desired rangeof properties was achieved by developing an advancedMLmodel through data segregation and data augmentation.To examine the reliability of this model, results were rigorously compared and verified using several independentdata reported in the literature. This comparison substantiates that the results predicted by our model regarding thevariation of conductivity and evolution ofmicrostructure and mechanical properties with composition are in goodagreement with the reports published in the literature. 展开更多
关键词 Machine learning genetic algorithm SOLID-SOLUTION precipitation strengthening pareto front data augmentation
下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
7
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
8
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
下载PDF
GCAGA: A Gini Coefficient-Based Optimization Strategy for Computation Offloading in Multi-User-Multi-Edge MEC System
9
作者 Junqing Bai Qiuchao Dai Yingying Li 《Computers, Materials & Continua》 SCIE EI 2024年第6期5083-5103,共21页
To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network... To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA. 展开更多
关键词 Mobile edge computing multi-user-multi-edge joint optimization Gini coefficient adaptive genetic algorithm
下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
10
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
下载PDF
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm
11
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
下载PDF
Design Method for Optimizing the Interactive Interface of Live Broadcasting Platform for the Elderly Users
12
作者 WEI Bi-ze FAN Wei DUAN Ying-ke 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期167-178,共12页
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact... In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users. 展开更多
关键词 Live broadcasting platform Interaction design Elderly users genetic Algorithm Quantitative theory I
下载PDF
Solving the Generalized Traveling Salesman Problem Using Sequential Constructive Crossover Operator in Genetic Algorithm
13
作者 Zakir Hussain Ahmed Maha Ata Al-Furhood +1 位作者 Abdul Khader Jilani Saudagar Shakir Khan 《Computer Systems Science & Engineering》 2024年第5期1113-1131,共19页
The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is h... The generalized travelling salesman problem(GTSP),a generalization of the well-known travelling salesman problem(TSP),is considered for our study.Since the GTSP is NP-hard and very complex,finding exact solutions is highly expensive,we will develop genetic algorithms(GAs)to obtain heuristic solutions to the problem.In GAs,as the crossover is a very important process,the crossovermethods proposed for the traditional TSP could be adapted for the GTSP.The sequential constructive crossover(SCX)and three other operators are adapted to use in GAs to solve the GTSP.The effectiveness of GA using SCX is verified on some GTSP Library(GTSPLIB)instances first and then compared against GAs using the other crossover methods.The computational results show the success of the GA using SCX for this problem.Our proposed GA using SCX,and swap mutation could find average solutions whose average percentage of excesses fromthe best-known solutions is between 0.00 and 14.07 for our investigated instances. 展开更多
关键词 Generalized travelling salesman problem NP-HARD genetic algorithms sequential constructive crossover swap mutation
下载PDF
BArcherFuzzer:An Android System Services Fuzzier via Transaction Dependencies of BpBinder
14
作者 Jiawei Qin Hua Zhang +3 位作者 Hanbing Yan Tian Zhu Song Hu Dingyu Yan 《Intelligent Automation & Soft Computing》 2024年第3期527-544,共18页
By the analysis of vulnerabilities of Android native system services,we find that some vulnerabilities are caused by inconsistent data transmission and inconsistent data processing logic between client and server.The ... By the analysis of vulnerabilities of Android native system services,we find that some vulnerabilities are caused by inconsistent data transmission and inconsistent data processing logic between client and server.The existing research cannot find the above two types of vulnerabilities and the test cases of them face the problem of low coverage.In this paper,we propose an extraction method of test cases based on the native system services of the client and design a case construction method that supports multi-parameter mutation based on genetic algorithm and priority strategy.Based on the above method,we implement a detection tool-BArcherFuzzer to detect vulnerabilities of Android native system services.The experiment results show that BArcherFuzzer found four vulnerabilities of hundreds of exception messages,all of them were confirmed by Google and one was assigned a Common Vulnerabilities and Exposures(CVE)number(CVE-2020-0363). 展开更多
关键词 Android OS vulnerability detection BINDER fuzz testing genetic algorithm
下载PDF
The Key Path of the Shape Optimization Design of Isotropic Material Pressure Vessels
15
作者 Qingshan Zeng Zuxin Chen 《World Journal of Engineering and Technology》 2024年第3期775-797,共23页
An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included... An optimization design was conducted for the shape of the pressure vessel with a thin-shell shell. During this process, the optimization calculation was performed with the aid of the genetic algorithm toolbox included in Matlab. Firstly, through the parametric modeling function of APDL, models such as arc-shaped, parabolic, elliptical, and those generated by the fitting curve command were successfully constructed. Meanwhile, the relevant settings of material properties were accomplished, and the static analysis was conducted. Secondly, the optimization calculation process was initiated using the genetic algorithm toolbox in Matlab. Eventually, through analysis and judgment, the model generated by the fitting curve command was relatively superior within the category of the best shape. 展开更多
关键词 Optimization Design Parametric Modeling Thin-Shell Shell MATLAB genetic Algorithm Toolbox
下载PDF
Density Structure of the Papua New Guinea-Solomon Arc Subduction System
16
作者 XU Chong XING Junhui +3 位作者 GONG Wei ZHANG Hao XU Haowei XU Xiaoyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1269-1276,共8页
The Papua New Guinea-Solomon(PN-SL)arc is one of the regions with active crustal motions and strong geological actions.Thus,its complex subduction system makes it an ideal laboratory for studying the initiation mechan... The Papua New Guinea-Solomon(PN-SL)arc is one of the regions with active crustal motions and strong geological actions.Thus,its complex subduction system makes it an ideal laboratory for studying the initiation mechanism of plate subduction.However,the PN-SL subduction system has not yet been sufficiently studied,and its density structure has yet to be revealed.In this paper,we used the free-air gravity data,Parker-Oldenburg density surface inversion method,and the genetic algorithm density inversion method to obtain the density structure of an approximately 1000-km-long northwest-southeast line crossing the PN-SL subduction system under the constraints of the CRUST1.0 global crustal model,onshore seismic data,and the LLNL-G3Dv3 global P-wave velocity model.The density structure shows that density differences between the plates on the two sides of the trench could play a significant role in plate subduction. 展开更多
关键词 Papua New Guinea-Solomon plate subduction gravity anomaly density structure genetic algorithm
下载PDF
Assessment of Different Optimization Algorithms for a Thermal Conduction Problem
17
作者 Mohammad Reza Hajmohammadi Javad Najafiyan Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2023年第1期233-244,共12页
In this study,three computational approaches for the optimization of a thermal conduction problem are critically compared.These include a Direct Method(DM),a Genetic Algorithm(GA),and a Pattern Search(PS)technique.The... In this study,three computational approaches for the optimization of a thermal conduction problem are critically compared.These include a Direct Method(DM),a Genetic Algorithm(GA),and a Pattern Search(PS)technique.The optimization aims to minimize the maximum temperature of a hot medium(a medium with uniform heat generation)using a constant amount of high conductivity materials(playing the role of fixed factor constraining the considered problem).The principal goal of this paper is to determine the most efficient and fastest option among the considered ones.It is shown that the examined three methods approximately lead to the same result in terms of maximum tem-perature.However,when the number of optimization variables is low,the DM is the fastest one.An increment in the complexity of the design and the number of degrees of freedom(DOF)can make the DM impractical.Results also show that the PS algorithm becomes faster than the GA as the number of variables for the optimization rises. 展开更多
关键词 OPTIMIZATION thermal conduction pattern search genetic algorithm
下载PDF
Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
18
作者 陆静远 崔春凤 +4 位作者 欧阳滔 李金 何朝宇 唐超 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期109-117,共9页
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive... The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials. 展开更多
关键词 adaptive genetic algorithm thermoelectric material diamond-like quantum dots gamma-graphyne nanoribbon
下载PDF
Impact of Genetic Algorithm for the Diagnosis of Breast Cancer: Literature Review
19
作者 Abebe Alemu Balcha Samuel Alemu Woldie 《Advances in Infectious Diseases》 CAS 2023年第1期41-46,共6页
In recent research from the total number of new cancer cases in Africa about 29.46% and in Ethiopia 31.85% are breast cancer cases. 25.84% of all cancer related death is from breast cancer. One of the challenges in th... In recent research from the total number of new cancer cases in Africa about 29.46% and in Ethiopia 31.85% are breast cancer cases. 25.84% of all cancer related death is from breast cancer. One of the challenges in the treatment of breast cancer is early detection. Researchers agreed that, improving the preventive mechanism of breast cancer is an early predicting and detecting model. Research efforts are continuing to present different solution approaches using advanced techniques of Artificial intelligence (AI), Machine learning (ML), Deep Learning (DL), and Computational Intelligence as well. A genetic algorithm is a hyper-parameter optimization algorithm that belongs to the class of evolutionary algorithms. Genetic Algorithm (GA) is used for complex search spaces for search and optimization. This reviewed literature paper shows the positive effect of GA in the diagnosis of breast cancer on AI algorithms. 展开更多
关键词 genetic Algorithm Breast Cancer Feature Classification OPTIMIZATION
下载PDF
Generating of Test Data by Harmony Search Against Genetic Algorithms
20
作者 Ahmed S.Ghiduk Abdullah Alharbi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期647-665,共19页
Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.... Many search-based algorithms have been successfully applied in sev-eral software engineering activities.Genetic algorithms(GAs)are the most used in the scientific domains by scholars to solve software testing problems.They imi-tate the theory of natural selection and evolution.The harmony search algorithm(HSA)is one of the most recent search algorithms in the last years.It imitates the behavior of a musician tofind the best harmony.Scholars have estimated the simi-larities and the differences between genetic algorithms and the harmony search algorithm in diverse research domains.The test data generation process represents a critical task in software validation.Unfortunately,there is no work comparing the performance of genetic algorithms and the harmony search algorithm in the test data generation process.This paper studies the similarities and the differences between genetic algorithms and the harmony search algorithm based on the ability and speed offinding the required test data.The current research performs an empirical comparison of the HSA and the GAs,and then the significance of the results is estimated using the t-Test.The study investigates the efficiency of the harmony search algorithm and the genetic algorithms according to(1)the time performance,(2)the significance of the generated test data,and(3)the adequacy of the generated test data to satisfy a given testing criterion.The results showed that the harmony search algorithm is significantly faster than the genetic algo-rithms because the t-Test showed that the p-value of the time values is 0.026<α(αis the significance level=0.05 at 95%confidence level).In contrast,there is no significant difference between the two algorithms in generating the adequate test data because the t-Test showed that the p-value of thefitness values is 0.25>α. 展开更多
关键词 Harmony search algorithm genetic algorithms test data generation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部