Deeply subducted lithospheric slabs may reach to the mantle transition zone(MTZ,410-660 km depth)or even to the core–mantle boundary(CMB)at depths of^2900km.Our knowledge of the fate of subducted surface material at ...Deeply subducted lithospheric slabs may reach to the mantle transition zone(MTZ,410-660 km depth)or even to the core–mantle boundary(CMB)at depths of^2900km.Our knowledge of the fate of subducted surface material at the MTZ or near the CMB is poor and based mainly on the tomography data and laboratory experiments through indirect methods.Limited data come from the samples of deep mantle diamonds and their mineral inclusions obtained from kimberlites and associated rock assemblages in old cratons.We report in this presentation new data and observations from diamonds and other UHP minerals recovered from ophiolites that we consider as a new window into the life cycle of deeply subducted oceanic and continental crust.Ophiolites are fragments of ancient oceanic lithosphere tectonically accreted into continental margins,and many contain significant podiform chromitites.Our research team has investigated over the last 10 years ultrahigh-pressure and super-reducing mineral groups discovered in peridotites and/or chromitites of ophiolites around the world,including the Luobusa(Tibet),Ray-Iz(Polar Urals-Russia),and 12 other ophiolites from 8orogenic belts in 5 different countries(Albania,China,Myanmar,Russia,and Turkey).High-pressure minerals include diamond,coesite,pseudomorphic stishovite,qingsongite(BN)and Ca-Si perovskite,and the most important native and highly reduced minerals recovered to date include moissanite(Si C),Ni-Mn-Co alloys,Fe-Si and Fe-C phases.These mineral groups collectively confirm extremely high?pressures(300 km to≥660 km)and super-reducing conditions in their environment of formation in the mantle.All of the analyzed diamonds have unusually light carbon isotope compositions(δ13C=-28.7 to-18.3‰)and variable trace element contents that*d i stinguish them from most kimberlitic and UHPmetamorphic varieties.The presence of exsolution lamellae of diopside and coesite in some chromite grains suggests chromite crystallization depths around>380 km,near the mantle transition zone.The carbon isotopes and other features of the high-pressure and super-reduced mineral groups point to previously subducted surface material as their source of origin.Recycling of subducted crust in the deep mantle may proceed in three stages:Stage 1–Carbon-bearing fluids and melts may have been formed in the MTZ,in the lower mantle or even near the CMB.Stage 2–Fluids or melts may rise along with deep plumes through the lower mantle and reach the MTZ.Some minerals,such as diamond,stishovite,qingsongite and Ca-silicate perovskite can precipitate from these fluids or melts in the lower mantle during their ascent.Material transported to the MTZ would be mixed with highly reduced and UHP phases,presumably derived from zones with extremely low f O2,as required for the formation of moissanite and other native elements.Stage 3–Continued ascent above the transition of peridotites containing chromite and ultrahigh-pressure minerals transports them to shallow mantle depths,where they participate in decompressional partial melting and oceanic lithosphere formation.The widespread occurrence of ophiolite-hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in-situ oceanic mantle.Because mid-ocean ridge spreading environments are plate boundaries widely distributed around the globe,and because the magmatic accretion of oceanic plates occurs mainly along these ridges,the on-land remnants of ancient oceanic lithosphere produced at former mid-ocean ridges provide an important window into the Earth’s recycling system and a great opportunity to probe the nature of deeply recycled crustal material residing in the deep mantle展开更多
Objective The greatest advantage of the Caofeidian Harbor is its deep channel facing the Bohai Bay. The deep channel is a natural port hub for shipping of the Caofeidian Habor. The construction of the Caofeidian Harb...Objective The greatest advantage of the Caofeidian Harbor is its deep channel facing the Bohai Bay. The deep channel is a natural port hub for shipping of the Caofeidian Habor. The construction of the Caofeidian Harbor has impacted the hydrodynamic environment and the sediments movement, which has attracted much attention about the geomorphic evolution, slope stability and the evolution trend after submarine slope destruction. Insight from this study might be significant for the future development of the Caofeidian Habor, including planning, operation and maintenance.展开更多
The purposes of the research aim to: (1) investigate the rehabilitation of the orphans affected by the violence in the Deep South of Thailand; and (2) provide the guideline for the government and institutions to ...The purposes of the research aim to: (1) investigate the rehabilitation of the orphans affected by the violence in the Deep South of Thailand; and (2) provide the guideline for the government and institutions to find ways to rehabilitate the orphans affected by the violence in the Deep South of Thailand. The number of the orphans is drastically increasing because of the violence crisis for a long time since 2004. The government has the policy to rehabilitate the orphans affected by the violence and takes the scholarships for relief their mind related injury Surveillance. The orphans trust the civil society more than the public government. Some opinions suggest the education, the activities, i.e., sports, music to empower the orphans, and the roles of the family and family members are the most important to take care and rehabilitate the orphans by using the religion for conducting "the social well-being".展开更多
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design o...To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.展开更多
Seismic tomography observations have shown that there are two large low shear velocity provinces(LLSVPs)above the core-mantle boundary beneath Africa and the Pacific.The thermal and compositional properties of these t...Seismic tomography observations have shown that there are two large low shear velocity provinces(LLSVPs)above the core-mantle boundary beneath Africa and the Pacific.The thermal and compositional properties of these two LLSVPs may differ from those of the ambient mantle,and they are suggested to be thermochemical piles of primordial material in the lower mantle.Their evolution is of great importance to our understanding of mantle dynamics.In this study,we systematically conducted numerical experiments to investigate the effects of the buoyancy ratio(B),compositional viscosity ratio(Δη_(c)),and heat-producing ratio(Λ)of the primordial material on the long-term evolution of thermochemical piles.Our results show that the buoyancy ratio plays the most important role in the stability of these piles.When the buoyancy ratio is small,and the primordial material is enriched in heat-producing elements(Λ>1),the stability of these piles decreases with increasing compositional viscosity ratio or heat-producing ratio.For cases with homogeneous heat production(Λ=1),the stability of these piles increases with increasingΔηc.We further compare constant internal heating with radioactive decay internal heating,and find that the longterm stability of thermochemical piles slightly decreases with radioactive decay heating,but the overall differences between these two internal heating modes are relatively small.展开更多
Hugo Shong explains what it takes to be a successful venture capitalist Hugo Shong, Vice Chairman of IDG Technology Venture Investment (IDGVC), is used to seeing 60-fold and sometimes 120-fold returns on investment.
A Chinese-made manned submersible designed to dive to 7,000 meters successfully reached a depth of 3,759 meters during a manned test,said the Ministry of Science and Technology and the State Oceanic Administration on ...A Chinese-made manned submersible designed to dive to 7,000 meters successfully reached a depth of 3,759 meters during a manned test,said the Ministry of Science and Technology and the State Oceanic Administration on August 26. The submersible,dubbed Jiaolong,with three crew on board,completed 17 dives in the South China Sea from May 31 to July 18.展开更多
China's seniors have warmed up to winter swimming, but in some cases these 'polar bears' are breaking the law Wu Shoutian, a 59-year-old Beijing resident, swam every day in 2004. In the winter of 2005, he ...China's seniors have warmed up to winter swimming, but in some cases these 'polar bears' are breaking the law Wu Shoutian, a 59-year-old Beijing resident, swam every day in 2004. In the winter of 2005, he stopped for two weeks when his 88-year-old mother was sick and needed care. Wu, retired from an auto supply company in Beijing, has insisted on展开更多
The discovery of shock waves at observations sun like stars quasi-zero method. Shock waves associated with solar flares in Ha, it is shown that the amplitude of shock waves decreases to the edge of the sun, it follows...The discovery of shock waves at observations sun like stars quasi-zero method. Shock waves associated with solar flares in Ha, it is shown that the amplitude of shock waves decreases to the edge of the sun, it follows that these waves are global. The conclusion is that the appearance of these waves may be connected with explosions in the deeper layers of the sun.展开更多
In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel re...In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.展开更多
A new non-Euclidean continuum damage model is proposed to investigate the zonal disintegration phenomenon of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition as well as the tota...A new non-Euclidean continuum damage model is proposed to investigate the zonal disintegration phenomenon of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition as well as the total elastic stress field distributions.The elastic stress fields of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition axe obtained.If the elastic stresses of the surrounding rocks satisfy the strength criterion of the deep rock masses,the number,size and location of fractured and nonfractured zones are determined.The effect of physico-mechanical parameters of the surrounding rocks on the zonal disintegration phenomenon is studied and numerical computation is carried out.It is found from numerical results that the number,size and location of fractured and non-fractured zones are sensitive to the physico-mechanical parameters of the surrounding rocks.展开更多
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up consid...The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.展开更多
文摘Deeply subducted lithospheric slabs may reach to the mantle transition zone(MTZ,410-660 km depth)or even to the core–mantle boundary(CMB)at depths of^2900km.Our knowledge of the fate of subducted surface material at the MTZ or near the CMB is poor and based mainly on the tomography data and laboratory experiments through indirect methods.Limited data come from the samples of deep mantle diamonds and their mineral inclusions obtained from kimberlites and associated rock assemblages in old cratons.We report in this presentation new data and observations from diamonds and other UHP minerals recovered from ophiolites that we consider as a new window into the life cycle of deeply subducted oceanic and continental crust.Ophiolites are fragments of ancient oceanic lithosphere tectonically accreted into continental margins,and many contain significant podiform chromitites.Our research team has investigated over the last 10 years ultrahigh-pressure and super-reducing mineral groups discovered in peridotites and/or chromitites of ophiolites around the world,including the Luobusa(Tibet),Ray-Iz(Polar Urals-Russia),and 12 other ophiolites from 8orogenic belts in 5 different countries(Albania,China,Myanmar,Russia,and Turkey).High-pressure minerals include diamond,coesite,pseudomorphic stishovite,qingsongite(BN)and Ca-Si perovskite,and the most important native and highly reduced minerals recovered to date include moissanite(Si C),Ni-Mn-Co alloys,Fe-Si and Fe-C phases.These mineral groups collectively confirm extremely high?pressures(300 km to≥660 km)and super-reducing conditions in their environment of formation in the mantle.All of the analyzed diamonds have unusually light carbon isotope compositions(δ13C=-28.7 to-18.3‰)and variable trace element contents that*d i stinguish them from most kimberlitic and UHPmetamorphic varieties.The presence of exsolution lamellae of diopside and coesite in some chromite grains suggests chromite crystallization depths around>380 km,near the mantle transition zone.The carbon isotopes and other features of the high-pressure and super-reduced mineral groups point to previously subducted surface material as their source of origin.Recycling of subducted crust in the deep mantle may proceed in three stages:Stage 1–Carbon-bearing fluids and melts may have been formed in the MTZ,in the lower mantle or even near the CMB.Stage 2–Fluids or melts may rise along with deep plumes through the lower mantle and reach the MTZ.Some minerals,such as diamond,stishovite,qingsongite and Ca-silicate perovskite can precipitate from these fluids or melts in the lower mantle during their ascent.Material transported to the MTZ would be mixed with highly reduced and UHP phases,presumably derived from zones with extremely low f O2,as required for the formation of moissanite and other native elements.Stage 3–Continued ascent above the transition of peridotites containing chromite and ultrahigh-pressure minerals transports them to shallow mantle depths,where they participate in decompressional partial melting and oceanic lithosphere formation.The widespread occurrence of ophiolite-hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in-situ oceanic mantle.Because mid-ocean ridge spreading environments are plate boundaries widely distributed around the globe,and because the magmatic accretion of oceanic plates occurs mainly along these ridges,the on-land remnants of ancient oceanic lithosphere produced at former mid-ocean ridges provide an important window into the Earth’s recycling system and a great opportunity to probe the nature of deeply recycled crustal material residing in the deep mantle
基金supported by the National Natural Science Foundation of China(Grant No.41276060)
文摘Objective The greatest advantage of the Caofeidian Harbor is its deep channel facing the Bohai Bay. The deep channel is a natural port hub for shipping of the Caofeidian Habor. The construction of the Caofeidian Harbor has impacted the hydrodynamic environment and the sediments movement, which has attracted much attention about the geomorphic evolution, slope stability and the evolution trend after submarine slope destruction. Insight from this study might be significant for the future development of the Caofeidian Habor, including planning, operation and maintenance.
文摘The purposes of the research aim to: (1) investigate the rehabilitation of the orphans affected by the violence in the Deep South of Thailand; and (2) provide the guideline for the government and institutions to find ways to rehabilitate the orphans affected by the violence in the Deep South of Thailand. The number of the orphans is drastically increasing because of the violence crisis for a long time since 2004. The government has the policy to rehabilitate the orphans affected by the violence and takes the scholarships for relief their mind related injury Surveillance. The orphans trust the civil society more than the public government. Some opinions suggest the education, the activities, i.e., sports, music to empower the orphans, and the roles of the family and family members are the most important to take care and rehabilitate the orphans by using the religion for conducting "the social well-being".
基金Supported by the NSFC under Grant No. 50679051 and NO.50639030.
文摘To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.
基金supported by the National Natural Science Foundation of China(Grant Nos.41888101,41625016)the International Partnership Program of Chinese Academy of Sciences(Grant No.132A11KYSB20200019)+2 种基金the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021003)the Key Research Program of the Institute of Geology and Geophysics CAS(Grant No.IGGCAS-201904)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘Seismic tomography observations have shown that there are two large low shear velocity provinces(LLSVPs)above the core-mantle boundary beneath Africa and the Pacific.The thermal and compositional properties of these two LLSVPs may differ from those of the ambient mantle,and they are suggested to be thermochemical piles of primordial material in the lower mantle.Their evolution is of great importance to our understanding of mantle dynamics.In this study,we systematically conducted numerical experiments to investigate the effects of the buoyancy ratio(B),compositional viscosity ratio(Δη_(c)),and heat-producing ratio(Λ)of the primordial material on the long-term evolution of thermochemical piles.Our results show that the buoyancy ratio plays the most important role in the stability of these piles.When the buoyancy ratio is small,and the primordial material is enriched in heat-producing elements(Λ>1),the stability of these piles decreases with increasing compositional viscosity ratio or heat-producing ratio.For cases with homogeneous heat production(Λ=1),the stability of these piles increases with increasingΔηc.We further compare constant internal heating with radioactive decay internal heating,and find that the longterm stability of thermochemical piles slightly decreases with radioactive decay heating,but the overall differences between these two internal heating modes are relatively small.
文摘Hugo Shong explains what it takes to be a successful venture capitalist Hugo Shong, Vice Chairman of IDG Technology Venture Investment (IDGVC), is used to seeing 60-fold and sometimes 120-fold returns on investment.
文摘A Chinese-made manned submersible designed to dive to 7,000 meters successfully reached a depth of 3,759 meters during a manned test,said the Ministry of Science and Technology and the State Oceanic Administration on August 26. The submersible,dubbed Jiaolong,with three crew on board,completed 17 dives in the South China Sea from May 31 to July 18.
文摘China's seniors have warmed up to winter swimming, but in some cases these 'polar bears' are breaking the law Wu Shoutian, a 59-year-old Beijing resident, swam every day in 2004. In the winter of 2005, he stopped for two weeks when his 88-year-old mother was sick and needed care. Wu, retired from an auto supply company in Beijing, has insisted on
文摘The discovery of shock waves at observations sun like stars quasi-zero method. Shock waves associated with solar flares in Ha, it is shown that the amplitude of shock waves decreases to the edge of the sun, it follows that these waves are global. The conclusion is that the appearance of these waves may be connected with explosions in the deeper layers of the sun.
文摘In the past decades, two large scale coastal engineering projects have been carried out in the Deep Bay surrounded by Shenzhen City and Hong Kong Special Administrative Region. One project is Shenzhen River channel regulation and the other is the sea reclamation along the seashore on the Shenzhen side. The two projects are very close to the two national nature reserves, specifically Futian in Shenzhen and Mai Po in Hong Kong, which are important wetland ecosystems worldwide. This paper aims to identify and monitor the mangrove wetland changes with time series of Landsat Thematic Mapper images pre and post to the two engineering projects being launched. Coupled analysis of the image interpretation results and tidal data acquired at the same time in the context of the two works reveals that the mangrove wetland area has increased from year 1989 to 1994, and has changed little from year 1994 to 2002. Binary coding is applied to reveal the distribution image of mangrove at each phase, and the coding image shows that the construction of the two coastal engineering projects has caused frequent changes in mangrove spatial distribution. The study also shows that the change is not significant regarding to the precision of the method and the natural evolution of mangrove wetland, and the projects do not cause apparently influences upon the two national mangrove conservation zones at least for the research time period.
基金supported by the National Natural Science Foundation of China(Nos.51279218,51021001 and 51078371)Natural Science Foundation Project of CQ CSTC(No.CSTC,2009BA4046)the Fundamental Research Funds forthe Central Universities(No.CDJZR10205501)
文摘A new non-Euclidean continuum damage model is proposed to investigate the zonal disintegration phenomenon of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition as well as the total elastic stress field distributions.The elastic stress fields of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition axe obtained.If the elastic stresses of the surrounding rocks satisfy the strength criterion of the deep rock masses,the number,size and location of fractured and nonfractured zones are determined.The effect of physico-mechanical parameters of the surrounding rocks on the zonal disintegration phenomenon is studied and numerical computation is carried out.It is found from numerical results that the number,size and location of fractured and non-fractured zones are sensitive to the physico-mechanical parameters of the surrounding rocks.
文摘The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.