期刊文献+
共找到747篇文章
< 1 2 38 >
每页显示 20 50 100
The dry-hot valleys and forestation in southwest china 被引量:6
1
作者 马焕成 Jack A.McConchie 《Journal of Forestry Research》 CAS CSCD 2001年第1期35-39,共7页
The dry-hot valleys (DHV) are located mainly in the deeply incised v alleys along the upper streams of several international and domestically rivers, like Yangtz, Zhu, Lanchang, Hong, and Nu rivers. This paper briefl... The dry-hot valleys (DHV) are located mainly in the deeply incised v alleys along the upper streams of several international and domestically rivers, like Yangtz, Zhu, Lanchang, Hong, and Nu rivers. This paper briefly described t he reasons of formation of DHV from view of climate and geographical conditions, and by referring to great deal of documents, analyzed the historical case and p resent status of the vegetations in DHV. The environment in DHV is facing the se rious vulnerable period in the history due to its nature situation of half-year dry period, fragile geological structure and shallow soil, and its social situat ion of over dense population and over farming. The primary vegetation is broad l eaf forest and it was denuded in the history. The current local vegetation is th e degraded secondary vegetation: savanna and succulent thorny shrub. Since the e nvironmental situation in valley influenced directly the water body of river, th e soil erosion control and re-vegetation in DHV is the most urgent task in the p rocess of environmental harness along the rivers. Quite a few pilot research pro jects have been carried out.on demonstrating new silviculture techniques for re- vegetation in DHV, but there still exist great difficulties in carrying out larg e-scale afforestation engineering. 展开更多
关键词 dry-hot valley Forestation Environmental harness
下载PDF
Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region 被引量:4
2
作者 WU Han XIONG Dong-hong +5 位作者 XIAO Liang ZHANG Su YUAN Yong SU Zheng-an ZHANG Bao-jun YANG Dan 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1546-1558,共13页
Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement ve... Soil microorganisms are sensitive indicator of soil health and quality. Understanding the effects of vegetation biomass and seasonal change on soil microorganisms is vital to evaluate the soil quality and implement vegetation restoration. This study analyzed the soil phospholipid fatty acids(PLFAs) in fresh and withered Kudzu(Pueraria montana var. lobata) vegetation conditions in different seasons. The results showed that vegetation biomass and seasonal change significantly affected microbial biomass and its community structure. Both fresh and withered Kudzu cover significantly increased soil microbial biomass, and the growth effect of microbes in the soil with fresh Kudzu cover was more obvious than that with withered Kudzu cover. Compared with the dry season, the rainy season significantly increased the microbial biomass and the B/F(the ratio of bacterial to fungal PLFAs) ratio but dramatically reduced the G+/G-(the ratio of gram-positive to gram-negative bacteria PLFAs). Kudzu cover and seasonal change had a significant effect on microbial structure in soil covered by higher vegetation biomass. Furthermore, soil temperature and moisture had different correlations with specific microbial biomass in the two seasons. Our findings highlight the effect of Kudzu vine cover on the soil microenvironment and soil microhabitat, enhancing the soil quality in the Dry-hot Valley of Jinsha River, Southwest China. 展开更多
关键词 Phospholipid fatty acid VEGETATION Soil microbes Soil temperature Soil moisture dry-hot valley
下载PDF
Anthropogenic Impacts on the Sediment Flux in the Dry-hot Valleys of Southwest China—an Example of the Longchuan River 被引量:3
3
作者 ZHOUYue LUXixi +1 位作者 HUANGYing ZHUYunmei 《Journal of Mountain Science》 SCIE CSCD 2004年第3期239-249,共11页
The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen’s test. In both the upper... The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen’s test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir. 展开更多
关键词 Sediment flux dry-hot valley DEFORESTATION AFFORESTATION RESERVOIR road construction
下载PDF
A novel model to assess soil productivity in the dry-hot valleys of China 被引量:3
4
作者 DUAN Xing-wu HAN Xu +2 位作者 HU Jin-ming FENG De-tai RONG Li 《Journal of Mountain Science》 SCIE CSCD 2017年第4期705-715,共11页
Accurate evaluation of soil productivity has been a long-standing challenge. Although numerous models for productivity assessment exist, most are cumbersome to use and require substantial parameter inputs. We develope... Accurate evaluation of soil productivity has been a long-standing challenge. Although numerous models for productivity assessment exist, most are cumbersome to use and require substantial parameter inputs. We developed a new empirical soil productivity model based on field investigations of soil erosion, soil physieoehemieal properties, and crop yields in the dry-hot valleys (DHVs) in China. We found that soil pH, and organic matter and available potassium contents significantly affected crop yields under eroded conditions of the DHVs. Moreover, available potassium content was the key factor affecting soil productivity. We then modified an existing soil productivity model by adding the following parameters: contents of effective water, potassium, organic matter, and clay, soil pH, and root weighting factor. The modified soil productivity model explained 63.5% of the crop yield. We concluded that the new model was simple, realistic, and exhibited strong predictability. In addition to providing an accurate assessment of soil productivity,our model could potentially be applied as a soil module in comprehensive crop models. 展开更多
关键词 Soil productivity Productivity indexmodel Redundancy analysis dry-hot valleys
下载PDF
Effects of Land Use Change on the Ecosystem Services Value in the Dry-Hot Valley 被引量:2
5
作者 ZHOU Hongyi XIONG Donghong +1 位作者 YANG Zhong HE Xiubin 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期743-748,共6页
The objective of the study reported here was to determine whether LANDSAT TM images could be used to quantify changes in land-use and ecosystem services in Yuanmou County. The sizes of six land use/land cover (LUCC)... The objective of the study reported here was to determine whether LANDSAT TM images could be used to quantify changes in land-use and ecosystem services in Yuanmou County. The sizes of six land use/land cover (LUCC) categories were estimated in Yuanmou County according to the LANDSAT TM images in the summer of 1986 and 2005. Coefficients published by Xie Gaodi and co-workers in 2003 were used to value changes in ecosystem services delivered by each land use/land cover category, and the ecosystem services sensitivity analysis was conducted to determine the effect of manipulating these coefficients on the estimated values. The important results are summarized as followings. (1) The estimated size of cultivated land, pasture land, water area and unused land decreased by 6.39%, 1.35%, 2.25% and 10.67% respectively between 1986 and 2005. By contrast, the estimated size of forest land and construction land increased by about 2.23% and 71.15% respectively between 1986 and 2005. (2) The total ecosystem services value (EVS) of the study area increased from 2 142 132 609.46 yuan to 2 146 416 621.00 yuan, with the net increase of 4 284 011.54 yuan during the 20-year time period. (3) The coefficient sensitivity (CS) of the study are less than unity in all cases (CS 〈 1). This indicates that the total ecosystem values estimated for the study area are relatively inelastic with respect to the ecosystem service coefficients. While this implies that our estimates are robust and the coefficient is reasonable, highly under or over valued coefficients can substantially affect the veracity of estimated changes in ecosystem service values overtime even when the CS are less than unity(CS 〈 1). 展开更多
关键词 land use/land cover ecosystem services value dry-hot valley YUNNAN
下载PDF
Industrial Poverty Alleviation Model in Deep Poverty-stricken Villages in the Dry-hot Valley of Jinsha River: A Case Study of Poverty Alleviation in the Green Prickleyash Planting Industry in Laopingzi Village,Luquan County 被引量:1
6
作者 Meiqi SHAO Zisheng YANG 《Asian Agricultural Research》 2019年第6期59-63,70,共6页
Industrial poverty alleviation is the core of poverty alleviation in rural areas of China,and it is the fundamental way for the rural poor to achieve stable income and poverty alleviation. Laopingzi Village,Jiaopingdu... Industrial poverty alleviation is the core of poverty alleviation in rural areas of China,and it is the fundamental way for the rural poor to achieve stable income and poverty alleviation. Laopingzi Village,Jiaopingdu Town,Luquan County,Kunming County,Yunnan Province,located in the dry-hot valley area of Jinsha River,has become a typical deep poverty-stricken village due to its special natural conditions.In recent years,in the battle to win the fight against poverty,the people of Laopingzi Village have achieved a virtuous cycle of the ecological environment and an access to get rid of poverty and get rich through vigorously developing green prickleyash planting industry. By the end of 2018,the incidence of poverty in Laopingzi Village Committee dropped from 45. 62% in 2014 to 1. 11%,and the green prickleyash planting industry had achieved remarkable results in poverty alleviation. This article summarizes the specific practices of developing the green prickleyash planting industry in the village,analyzes the main results and successful experiences of the mode and discusses the inspiration of the implementation of green prickleyash cultivation on industrial poverty alleviation,so as to provide an effective practical example for the development and poverty alleviation of poverty-stricken areas. 展开更多
关键词 INDUSTRIAL poverty alleviation Green prickleyash Characteristic PLANTING Mode DEEP POVERTY-STRICKEN VILLAGE dry-hot valley area of Jinsha River
下载PDF
From Ghana to the dry-hot valleys of China:assessing factors influencing fruit yield in agroforestry species Vitellaria paradoxa after 54 years of cultivation outside Africa
7
作者 Gaojuan Zhao Sailesh Ranjitkar +7 位作者 Aurele Gnetegha Ayemele Tianliang Li Xinyu Wang Liqing Wu Anthony B.Cunningham Xiaohui Han Haiqin Qin Shiyu Zhang 《Circular Agricultural Systems》 2023年第1期56-63,共8页
Although distributed across the Sudano-Sahelian region as an agroforestry system tree species,Vitellaria paradoxa has yet to be reported as successfully established outside of Africa,significantly limiting its yield a... Although distributed across the Sudano-Sahelian region as an agroforestry system tree species,Vitellaria paradoxa has yet to be reported as successfully established outside of Africa,significantly limiting its yield and further exploitation.In this paper,in order to assess a well-established population of V.paradoxa in the Yuanjiang dry-hot valley of China and examine the relationships between morphological-geological factors and fruit yield,we monitored dendrometric traits and fruiting across 844 shea trees located on different aspects,and applied partial least square regression to build a yield model based on dendrometric and geographical variables.Results revealed climatic resemblance of the introduction site in Yuanjiang to the natural habitat in Ghana,and the growth performance and fruit yield were also comparable,but accumulated precipitation of about 600 mm was better for fruit yield when heat accumulation reached about 2,000.Apart from crown diameter(p<0.05),dendrometric parameters(basal diameter,basal area and tree height)had positively weak relationships with fruit yield.On the contrary,aside from north and northeast aspect,other aspects showed a strong negative influence.The findings presented that growth and productivity of V.paradoxa increased with dendrometric parameters and monthly average temperature on shady and semi-shady slope,providing a theoretical basis for the development of shea tree and construction of agroforestry system in dry tropical areas outside Africa. 展开更多
关键词 OUTSIDE valley ASSESSING
下载PDF
Influence of Vegetation Coverage on Surface Runoff and Soil Moisture in Rainy Season in Dry-hot Valley 被引量:7
8
作者 郭芬芬 南岭 +1 位作者 陈安强 刘刚才 《Agricultural Science & Technology》 CAS 2010年第4期138-143,共6页
[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverag... [Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverage and bare land in rainy reason in Jinsha River at Yuanmou County of Yunnan Province were observed continuously.Moreover,the statistical analysis was made based on the observation data.[Result]The vegetation coverage could decrease surface runoff and the surface runoff on bare land(CK) was 22 times as the plot with vegetation coverage.The soil water content in 0-180 cm layer with vegetation coverage increased by 37.8% than bare land.The stability of soil moisture content in deep layer was enhanced and the physical properties stability of soil was maintained.The soil moisture content in different depth of soil had significant difference and the changes of soil moisture content were obviously different.[Conclusion]The vegetation coverage of slope could change the soil hydrology obviously and keep soil moisture at the higher level,especially at soil layer below 20 cm. 展开更多
关键词 Vegetation coverage Surface runoff Soil moisture dry-hot valley
下载PDF
Effect of Typical Vegetation Restoration Pattern on Soil and Water Conservation in Yuanmou Dry-hot Valley of Yunnan Province 被引量:1
9
作者 南岭 郭芬芬 +1 位作者 王小丹 刘刚才 《Agricultural Science & Technology》 CAS 2010年第11期167-171,201,共6页
In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecologi... In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile. 展开更多
关键词 dry-hot valley Soil and water loss Vegetation restoration Soil moisture
下载PDF
Livelihood Strategy and Farmland Use in Xinping County of Yuanjiang Dry-hot Valley 被引量:1
10
作者 赵文娟 杨世龙 王潇 《Agricultural Science & Technology》 CAS 2016年第4期977-982,共6页
Methods of participatory rural appraisal and mathematical statistics were adopted to study livelihood diversification, livelihood strategy and farmland use of the four types of farmers in Xinping County of Yuanjiang d... Methods of participatory rural appraisal and mathematical statistics were adopted to study livelihood diversification, livelihood strategy and farmland use of the four types of farmers in Xinping County of Yuanjiang dry-hot valley with field survey data. The results showed as follows: firstly, as farmers are transforming from pure agriculture to non-agriculture, their agricultural livelihood diversification index will decrease, while non-agricultural livelihood diversification index will increase. In term of livelihood activities, pure agricultural farmers are exclusively engaged in agricultural activities, agricultural-dominant and non-agricultural-dominant farmers are engaged in both agricultural and non-agricultural ones, while non-agricultural farmers are basically engaged in off-farm activities. Secondly, as for crops planted, pure agricultural and agricultural-dominant farmers tend to choose those crops with more investment,shorter growth period and higher value, meanwhile non-agricultural-dominant farmers tend to choose crops with less investment, simpler management and longer growth period. Thirdly, to cope with current problems in farming, pure agricultural farmers will adopt measures such as changing planting structure, maintaining or expanding planting scale, increasing planting investment and renting in more land to promote the development of farming; agriculture-dominant farmers will adopt measures such as changing planting structure, reducing planting scale, maintaining planting investment, renting in and taking back the leased land as well as engaging in non-agricultural activities to overcome the difficulties faced; while non-agricultural-dominant farmers will adopt measures such as reducing both planting scale and investment,changing planting structure and engaging in farmland transfer as well as various offfarm activities to avoid livelihood risks. 展开更多
关键词 Xinping County of Yuanjiang dry-hot valley Farmers' livelihood activities Farmland use
下载PDF
Simulation of Morphological Development of Soil Cracks in Yuanmou Dry-hot Valley Region, Southwest China 被引量:8
11
作者 XIONG Donghong YAN Dongchun +4 位作者 LONG Yi LU Xiaoning HAN Jianning HAN Xueqin SHI Liangtao 《Chinese Geographical Science》 SCIE CSCD 2010年第2期112-122,共11页
Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the ... Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development. 展开更多
关键词 soil cracks morphological development simulation experiment Yuanmou dry-hot valley region Southwest China
下载PDF
Rainfall infiltration on hilly slopes under various lithology and its effect on tree growth in the dry-hot valley 被引量:3
12
作者 YANG Zhong, XIONG Donghong, ZHOU Hongyi & ZHANG Xinbao Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610041, China 《Science China(Technological Sciences)》 SCIE EI CAS 2003年第z1期110-119,共10页
Revegetation is very difficult in dry-hot valleys in China. Rainfall infiltration capability on hilly slopes is one of the key factors determining soil moisture conditions and tree growth in the dry-hot valley. Low ra... Revegetation is very difficult in dry-hot valleys in China. Rainfall infiltration capability on hilly slopes is one of the key factors determining soil moisture conditions and tree growth in the dry-hot valley. Low rainfall infiltration often results in soil drought on slopes under the dry-hot valleys climate. Rainfall infiltration capability varies greatly with the difference of slope lithologic porosity. The infiltration rates of five lithologic slope-types, Schist Slope, Grit Slope, Gravel Slope, the slightly eroded Mudstone Slope and the intensively eroded Mudstone Slope, are 1.40-8.67, 6.33, 0.69-2.20, 0.6-1.3 and 0.03-0.63 mm/min, respectively. With its viscid compact soil body and low infiltration capability which causes little infiltrating rainfall, mudstone slope can afford little effective supply to soil water and leads to serious drought of soil in dry seasons, resulting in cessation of growth or even wide-spread death of trees due to physiological damage for the excessive deficit of water in dry season and also the low productivity of stands. Hence, it is extremely difficult to restore vegetation on this type of slope. The other four lithologic slope-types, however, with well-developed soil crevice, high infiltration capability and thus more infiltrating rainfall, can afford more available soil water supply and the trees on them can obtain better growth and relatively higher productivity, compared with those on Mudstone Slope. Revegetation in dry-hot valleys is controlled by the soil moisture conditions of different slope-types, and it can be implemented by relying on the dominative life-form plant species, the suitable spatial arrangement of different life-forms of arbor-shrub-herb species, and the establishment of ecological community relationship between vegetation and soil moisture in habits. On the other hand, ground making measures for forestation and the runoff-collecting engineering measures to increase the rainfall infiltration are the major keys of revegetation techniques in dry-hot valleys. 展开更多
关键词 dry-hot valleys lithologic property rainfall infiltration tree growth.
原文传递
Responses of Dodonaea viscosa growth and soil biological properties to nitrogen and phosphorus additions in Yuanmou dry-hot valley 被引量:4
13
作者 WANG Xue-mei YAN Bang-guo +3 位作者 ZHAO Guang ZHAO Ji-xia SHI Liang-tao LIU Gang-cai 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1283-1298,共16页
Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and... Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types(Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon(C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation. 展开更多
关键词 Nutrient limitation Nitrogen-phosphorus Nitrogen deposition Soil enzyme dry-hot valley Dodonaea viscosa
下载PDF
Morphology and controlling factors of the longitudinal profile of gullies in the Yuanmou dry-hot valley 被引量:3
14
作者 DING Lin QIN Fa-chao +6 位作者 FANG Hai-dong LIU Hui ZHANG Bin SHU Cheng-qiang DENG Qing-chun LIU Gang-cai YANG Qian-qian 《Journal of Mountain Science》 SCIE CSCD 2017年第4期674-693,共20页
The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and ... The morphology of the gully longitudinal profile (GLP) is an important topographic index of the gully bottom associated with the evolution of the gullies. This index can be used to predict the development trend and evaluate the eroded volumes and soil losses by gullying. To depict the morphology of GLP and understand its controlling factors, the Global Positioning System Real-time Kinematic (GPS RTK) and the total station were used to measure the detail points along the gully bottom of 122 gullies at six sites of the Yuanmou dry-hot Valley. Then, nine parameters including length (Lt), horizontal distance (Dh), height (H), vertical erosional area (A), vertical curvature (Co), concavity (Ca), average gradient (Ga), gully length-gradient index (GL), normalized gully length-gradient index (Ngl), were calculated and mapped using CASS, Excel and SPSS. The results showed that this study area is dominated by slightly concave and medium gradient GLPs, and the lithology of most gullies is sandstone and siltstone. Although different types of GLPs appear at different sites, all parameters present a positively skewed distribution. There are relatively strong correlations between several parameters: namely Lt and H, Dh and H, Lt and A, Dh and A, H and GL. Most GLPs, except three, have a best fit of exponential functions with quasi- straight shapes. Soil properties, vegetation coverage, piping erosion and topography are important factors to affect the GLP morphology. This study provides useful insight into the knowledge of GLP morphology and its influential factors that are of critical importance to prevent and control gully erosion. 展开更多
关键词 Gully longitudinal profile Morphological characteristics Soil erosion Gully erosion Controlling factors dry-hot valley
下载PDF
Sap flow characteristics of three afforestation species during the wet and dry seasons in a dry-hot valley in Southwest China 被引量:2
15
作者 Xiaofei Wang Jianfeng Liu +2 位作者 Yongyu Sun Kun Li Chunhua Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期51-62,共12页
Assessing and using tree species (exotic or native) with superior tolerance to environmental stresses (such as drought and high temperature) play an important role in afforestation practices. In the present study,... Assessing and using tree species (exotic or native) with superior tolerance to environmental stresses (such as drought and high temperature) play an important role in afforestation practices. In the present study, stem sap flow characteristics and responses to ambient meteo- rological factors of three tree species, Albizzia kalkora (native), Azadirachta indica (exotic), and Acacia auriculaeformis (exotic), in a dry-hot valley (Yuanmou, Yunnan Province, China) were investigated using thermal dissipation probes. The diurnal dynamics of sap flow in three studied species displayed an obvious circadian rhythm during the wet and dry seasons, with the exception of A. indica during the dry season. The sap flow velocity (SFV) in A. kalkora and A. auriculaeformis was significantly positively correlated with photosynthetically active radiation (PAR), air temperature, vapour pressure deficit (VPD) and wind speed, but negatively correlated with atmospheric relative humidity over the two seasons. The cross-corre- lation analysis also revealed that the SFV of the three species was significantly correlated with PAR and VPD (P 〈 0.001). Additionally, stem sap flow lagged behind PAR but ahead of VPD, and the diurnal sap flow was more dependent on PAR than on VPD. However, we found that the dominant climatic factor influencing the stem sap flow differed between daytime and nighttime. PAR was more influential than other meteorological factors during the daytime, while VPD or other factors were more influential overnight. When the nighttime refilling ability of the three tree species was compared, our results suggest that A. indica has higher drought resistance and better for afforestation of the studied region. 展开更多
关键词 Sap flow Thermal dissipation probes Meteorological factors REFILL dry-hot valley
下载PDF
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China 被引量:1
16
作者 Zhen Xu Fachao Qin +4 位作者 Bin Zhang Qingchun Deng Hui Liu Jie Jin Liangtao Shi 《Acta Geochimica》 EI CAS CSCD 2018年第6期854-866,共13页
Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological charac... Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological characteristics of gully systems and watersheds in the Dry-Hot Valley [South West(SW) China], gullies are interpreted from online Google images with high resolution and watersheds are extracted from digital elevation model at a scale of 1:50,000. The results show that:(1) There are17,382 gullies(with a total area of 1141.66 km2) and 42 watersheds in the study area.(2) The average gully density of the study area(D) is 4.29 km/km2, gully frequency(F) is 14.39 gullies/km2, the branching ratio(B) is 5.13, the length ratio(L) is 3.12, and the coefficient of the main and tributary gullies(M) is 0.06. The degree of gully erosion isstrong to extremely strong, the main development intensity of gully erosion ranges from intense to moderate, and the type of gully system is tributary.(3) The watershed areas(A) are between 0.39 and 96.43 km2, the relief ratio(R) is from 0.10 to 0.19, the circularity ratio(C) is from 0.30 to0.83, the texture ratio(T) is from 0.82 to 39.35, and the dominant geomorphological texture type is fine.(4) There is a quantitative relationship between F and D:F = 0.624 D2(R =0.84) and T is closely related to D, F, M(R2[ 0.7). A,R and C are related to M(R2[ 0.5). The development of gully systems is the result of coupling effects between multiple factors. In this area, the degree of erosion and the condition of the main and tributary gullies can be controlled by the degree of topographic breakage in the watershed, which provides some theoretical basis for the evaluation of gully erosion by the latter. In addition, the scale, relief, and shape have a significant impact on the locations of the main and tributary gullies. For tributary gullies, attention should be paid to the interception and control of runoff and sediment in the small confluence branches in order to prevent gully expansion and head advance. These features can inform the development of targeted measures for the control of soil erosion. 展开更多
关键词 MORPHOLOGICAL characteristics Quantitative RELATIONSHIPS GULLY system WATERSHED dry-hot valley
下载PDF
Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation 被引量:3
17
作者 DENG Qingchun MIAO Fang +5 位作者 ZHANG Bin LUO Mingliang LIU Hui LIU Xiaojiao QIN Fachao LIU Gangcai 《Journal of Arid Land》 SCIE CSCD 2015年第6期778-793,共16页
The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding ... The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings. 展开更多
关键词 gully plane form morphological parameters controlling factors Yuanmou dry-hot valley
下载PDF
Seasonal Dynamics of the Soil Moisture in Yuanmou Dry-Hot Valley of Yunnan 被引量:1
18
作者 Yuanjiao Zhao Wenhua Su +2 位作者 Guangfei Zhang Fengtao Cui Rui Zhou 《Meteorological and Environmental Research》 CAS 2013年第4期56-58,共3页
[ Objective] The research aimed to study seasonal dynamics of the soil moisture in Yuanmou Dry-Hot Valley of Yunnan. [ Method] We investigated soil moisture in rainy season in Yuanmou Dry-Hot Valley. By combining comp... [ Objective] The research aimed to study seasonal dynamics of the soil moisture in Yuanmou Dry-Hot Valley of Yunnan. [ Method] We investigated soil moisture in rainy season in Yuanmou Dry-Hot Valley. By combining completed research about soil moisture in dry season, data in rainy and dry seasons were contrasted to study seasonal dynamics of the soil moisture in the zone. [ Resultl Soil moisture in rainy season increased with the depth of soil, but would decrease within 1.0 m below the root layer. The soil moisture of grassland was higher than that of the woodland, while soil moisture of the savanna was higher than that of the woodland but lower than that of the grassland. In addition, compared with soil mois- ture in dry season, it is clear that to avoid forming permanent soil desiccation, based on soil and hydrology conditions in Yuanmou, it is better to plant grass not tree in Yuanmou when we do something about ecological restoration. [ Condusion] The research had certain guidance significance for planting agricultural and economic crops and carrying out ecological restoration in Yuanmou Dry-Hot Valley. 展开更多
关键词 dry-hot valley Seasonal dynamics Soil moisture content Soil desiccation China
下载PDF
IMPACT OF WATER ENVIRONMENTAL CHARACTERISTICS IN DRY-HOT VALLEY OF JINSHA RIVER ON SOIL DESERTIFICATION 被引量:1
19
作者 刘刚才 刘淑珍 《Chinese Geographical Science》 SCIE CSCD 1999年第2期93-96,共4页
Based on the field investigation and the analysis of soil moisture curve, it is clearly shown that there is a positive relationship between vegetation coverage rate and soil moisture capacity and soil depth in dry ho... Based on the field investigation and the analysis of soil moisture curve, it is clearly shown that there is a positive relationship between vegetation coverage rate and soil moisture capacity and soil depth in dry hot valley of the Jinsha River, and also there is a desertification process with seasonality. It is suggested that the basic factor of desertification in the area is water deficiency (seasonal drought and low soil water capacity) and the direct dynamic of desertification is soil erosion. Some effective countermeasures are presented, of which water saving planting and irrigation techniques should be firstly applied in the studied area. 展开更多
关键词 DESERTIFICATION DRY HOT valley of the Jinsha RIVER WATER environment
下载PDF
Livelihood Capital and Livelihood Diversification for Different Farmers in Yuanjiang Dry-Hot River Valley
20
作者 Wenjuan ZHAO Shilong YANG Xiao WANG 《Asian Agricultural Research》 2016年第3期17-21,26,共6页
Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers' livelihood capital,to evaluate the current livelihood capital and livelihood diversification for ... Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers' livelihood capital,to evaluate the current livelihood capital and livelihood diversification for different farmers in the Dai nationality region of Xinping County in the Yuanjiang dry-hot river valley area,and discuss the relationship between livelihood capital and livelihood diversification. Studies have shown that the mode dominated by agriculture,supplemented by non-agricultural activities,combined with breeding,is the commonly used livelihood strategy for farmers in this region. As farmers change from pure agriculture to non-agriculture,their total livelihood capital and nonagricultural livelihood diversification index will increase,while agricultural livelihood diversification index will decrease. In the meantime,their livelihood activities gradually shift from agricultural to non-agricultural ones,which is mainly reflected in the combination of both agricultural and non-agricultural activities. Regression analysis on livelihood capital and livelihood diversification shows that natural and physical capital is the basis of realizing agricultural livelihood diversification. Farmers with rich natural and physical capital will prefer agricultural livelihood strategies. While financial and human capital is the driving force for farmers' transition from pure agriculture to non-agriculture. 展开更多
关键词 LIVELIHOOD CAPITAL LIVELIHOOD DIVERSIFICATION Regression analysis Yuanjiang dry-hot valley
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部