The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone t...The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.展开更多
A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geologica...A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geological and isotopic geochronological evidence. The zircon U-Pb isotopic dating results conducted in this note indicate that these granites emplaced at 260-290 Ma, coeval with the late stage of Late Paleozoic. Studies of mineralogy, petrology andgeochemistry show that they are post-orogenic A-type granites, and consist of the northeastern extension of huge belt of Late Paleozoic A-type granite along North Xinjiang-Southeast Mongolia-Central Inner Mongolia. Therefore, we can determine that the Suolunshan-Hegenshan-Zhalaite collisional suture zone extends northeastward to Heihe with the collision age of Carboniferous.展开更多
The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antif...The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antiform (“ trans\|anticlinal de l’Arun”, Bordet, 1961), a major late structure, c. 100km long, which strikes north to north\|northeast, transversely to the E—W tectonic trend of the eastern Himalaya from the lower Arun valley to southern Tibet. From south to north, i.e. from the core of the window upwards in the nappe pile, the tectonic units exposed in the ATW are:(1) The Lesser Himalayan Tumlingtar Unit (Nawakot nappes of Hagen,1969), a thick sequence of greenschist\|facies Upper Precambrian metasediments, bounded to the north by a thrust zone (Main Central Thrust 1 of Maruo & Kizaki, 1983; Main Central Thrust Zone of Meyer & Hiltner, 1993). (2) The Lesser Himalayan Crystalline nappe (LHC), comprised of staurolite to kyanite grade micaschists and granitic orthogneiss (Kathmandu Nappes of Hagen,1969), lying on top of the low\|grade metasediments. (3) The Higher Himalayan Crystalline nappe (Tibetan Slab of Bordet, 1977), bounded on both side of the ATW by thrust sheets defining a major syn\|metamorphic thrust (Main Central Thrust of Bordet,1961; Main Central Thrust 2 of Maruo & Kizaki, 1983).In this contribution some results of geological investigations in the hitherto unrecognized northern part of the ATW (Kharta region of the Arun—Phung Chu valley and Ama Drime—Nyonno Ri range), are presented. The Kharta region is 30km east of the Everest—Makalu massif and sits in the western limb of the Arun antiform, whereas the Ama Drime—Nyonno Ri Range, to the east of Kharta, is right in the core of the Arun antiform. Here the ATW exposes a section of deep tectonic levels of the Lesser Himalayan Crystalline nappe and MCT zone which elsewhere in the Nepal Himalaya are concealed below the overlying Higher Himalayan Crystalline nappe.展开更多
文摘The Arun mega\|antiform, a large N—S structure transversal to the tectonic trend of the E Nepal Himalaya, is a tectonic window offering a complete section of the Himalayan nappe pile, from the Lesser Himalayan zone to the Tethyan Himalaya. At the northern end of the Arun tectonic window (ATW), the Ama Drime—Nyonno Ri range of south Tibet exposes a section of that portion of the Main Central Thrust (MCT) zone and Lesser Himalayan Crystallines (LHC) which elsewhere in Nepal is concealed below the overlying Higher Himalayan Crystalline (HHC) nappe (Fig. 1). As throughout the Himalaya at the structural level of the MCT, the ATW is characterized by an inverted metamorphic field gradient characterized by a progression from chlorite to sillimanite grade from low to high structural levels of the nappe pile. Metamorphic peak temperatures rise from circa 400℃ in the pelitic and psammitic Precambrian metasediments of the Lesser Himalayan Tumlingtar Unit, to 550~620℃ in the overlying LHC, to over 700℃ in the muscovite\|free Barun Gneiss, the lowermost HHC unit in the Arun valley.
基金the National Natural Science Foundation of China (Grant No. 49872031)the Excellent Young Teachers and Doctor's Disciplines Foundation of the Ministry of Education of China (Grant No. 9518701).
文摘A great amount of alkali-feldspar and alkaline granites have been found around Nenjiang, Northwest Lesser Xing’an Ranges, but their forming ages have been a controversial subject due to the lack of reliable geological and isotopic geochronological evidence. The zircon U-Pb isotopic dating results conducted in this note indicate that these granites emplaced at 260-290 Ma, coeval with the late stage of Late Paleozoic. Studies of mineralogy, petrology andgeochemistry show that they are post-orogenic A-type granites, and consist of the northeastern extension of huge belt of Late Paleozoic A-type granite along North Xinjiang-Southeast Mongolia-Central Inner Mongolia. Therefore, we can determine that the Suolunshan-Hegenshan-Zhalaite collisional suture zone extends northeastward to Heihe with the collision age of Carboniferous.
文摘The Arun Tectonic Window (ATW) and its inverted metamorphic zonation were first described by Bordet (1961) and Hagen (1969) in their regional surveys of the eastern Nepal Himalaya. The ATW is centred on the Arun antiform (“ trans\|anticlinal de l’Arun”, Bordet, 1961), a major late structure, c. 100km long, which strikes north to north\|northeast, transversely to the E—W tectonic trend of the eastern Himalaya from the lower Arun valley to southern Tibet. From south to north, i.e. from the core of the window upwards in the nappe pile, the tectonic units exposed in the ATW are:(1) The Lesser Himalayan Tumlingtar Unit (Nawakot nappes of Hagen,1969), a thick sequence of greenschist\|facies Upper Precambrian metasediments, bounded to the north by a thrust zone (Main Central Thrust 1 of Maruo & Kizaki, 1983; Main Central Thrust Zone of Meyer & Hiltner, 1993). (2) The Lesser Himalayan Crystalline nappe (LHC), comprised of staurolite to kyanite grade micaschists and granitic orthogneiss (Kathmandu Nappes of Hagen,1969), lying on top of the low\|grade metasediments. (3) The Higher Himalayan Crystalline nappe (Tibetan Slab of Bordet, 1977), bounded on both side of the ATW by thrust sheets defining a major syn\|metamorphic thrust (Main Central Thrust of Bordet,1961; Main Central Thrust 2 of Maruo & Kizaki, 1983).In this contribution some results of geological investigations in the hitherto unrecognized northern part of the ATW (Kharta region of the Arun—Phung Chu valley and Ama Drime—Nyonno Ri range), are presented. The Kharta region is 30km east of the Everest—Makalu massif and sits in the western limb of the Arun antiform, whereas the Ama Drime—Nyonno Ri Range, to the east of Kharta, is right in the core of the Arun antiform. Here the ATW exposes a section of deep tectonic levels of the Lesser Himalayan Crystalline nappe and MCT zone which elsewhere in the Nepal Himalaya are concealed below the overlying Higher Himalayan Crystalline nappe.