This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters...This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.展开更多
The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix app...The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix approach and iterative method, and the numerical results are presented for a GaAs square quantum well. The results show that the third-harmonic generation coefficient is obviously enhanced after considering the influence of electron-phonon interactions.展开更多
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contribution...We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.展开更多
Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of ...Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.展开更多
Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cy...Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.展开更多
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites)...In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.展开更多
The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the ...The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.展开更多
Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and ...Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.展开更多
Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling...Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.展开更多
The electron-phonon interaction influences on lineax and nonfineax optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential axe investigated. The optical absorption coefficients are...The electron-phonon interaction influences on lineax and nonfineax optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential axe investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.展开更多
Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy io...Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification.展开更多
The photo-induced ultrafast electron dynamics in both anatase and rutile TiO_(2) are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates.All struc...The photo-induced ultrafast electron dynamics in both anatase and rutile TiO_(2) are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates.All structural parameters required for dynamic simulations are obtained from ab initio calculations.The results show that although the longitudinal optical modes significantly affect the electron energy relaxation dynamics in both phases due to strong Fr?hlich-type couplings,the detailed relaxation mechanisms have obvious differences.In the case of a single band,the energy relaxation time in anatase is 24.0 fs,twice longer than 11.8 fs in rutile.This discrepancy is explained by the different diffusion distributions over the electronic Bloch states and different scattering contributions from acoustic modes in the two phases.As for the multiple-band situation involving the lowest six conduction bands,the predicted overall relaxation times are about 47 fs and 57 fs in anatase and rutile,respectively,very different from the case of the single band.The slower relaxation in rutile is attributed to the existence of multiple rate-controlled steps during the dynamic process.The present findings may be helpful to control the electron dynamics for designing efficient TiO_(2)-based devices.展开更多
Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been w...Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.展开更多
With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new ...With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new challenges to the operation of the grid.Firstly,A novel bidirectional interaction model is established based on modulation theory with nonlinear loads.Then,the electric energy measuring scheme of EVs for V2G is derived under the conditions of distorted power loads.The scheme is composed of fundamental electric energy,fundamental-distorted electric energy,distorted-fundamental electric energy and distorted electric energy.And the characteristics of each electric energy are analyzed.Finally,the correctness of the model and energy measurement method is verified by three simulation cases:the impact signals,the fluctuating signals,and the harmonic signals.展开更多
Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a to...Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and byperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.展开更多
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coe...Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.展开更多
The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing annular cylindrical quantum dot are derived within the framework of dielectric continuum approximation. It is ...The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing annular cylindrical quantum dot are derived within the framework of dielectric continuum approximation. It is found that there exist two types of SO phonon modes: top SO (TSO) mode and side SO(SSO) mode in a cylindrical quantum annulus. Numerical calculation on CdS annulus system has been performed. Results reveal that the two different solutions of SSO mode distribute mainly at the inner or outer surfaces of the annulus. The dispersion relations and the coupling intensions of phonons in a quantum annulus are compared with those in a cylindrical quantum dot. It is found that the dispersion relations of the two different structures are similar, but the coupling intension of the phonon-electron interaction in quantum annulus is larger than that in quantum dot. The Hamiltonians describing the free phonon modes and their interactions with electrons in the system are also derived.展开更多
A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ w...A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.展开更多
A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO w...A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.展开更多
The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space in...The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space interactions are exponential flareout with increasing of the distance of two orbitals, and.both through-space interactions and through-bond interactions are sizable but those two interactions oppose each other causing the net splitting to be small. Transition-state procedure was used to calculate ionization potentials, the results are in agreement with the PE-spectra.展开更多
基金supported by the National Research Foundation of Korea(Grant number:NRF-2023R1A2C2005864)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2024-00406240)+3 种基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C1003853)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.RS-2023-00217661)Technology Innovation Program(RS-2022-00155961,Development of a high-efficiency drying system for carbon reduction and high-loading electrodes by a flash light source)funded by the Ministry of Trade&,Energy(MOTIE,Korea)supported by a National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(No.2022R1A2C4001497).
文摘This review provides a comprehensive overview of the progress in light-material interactions(LMIs),focusing on lasers and flash lights for energy conversion and storage applications.We discuss intricate LMI parameters such as light sources,interaction time,and fluence to elucidate their importance in material processing.In addition,this study covers various light-induced photothermal and photochemical processes ranging from melting,crystallization,and ablation to doping and synthesis,which are essential for developing energy materials and devices.Finally,we present extensive energy conversion and storage applications demonstrated by LMI technologies,including energy harvesters,sensors,capacitors,and batteries.Despite the several challenges associated with LMIs,such as complex mechanisms,and high-degrees of freedom,we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
基金The project supported by National Natural Science Foundation of China under Grant No. 60478010, the Science and Technology Committee of Guangdong Province of China under Grant Nos. 2004B10301014 and 04105406, Science and Technology Bureau of Guangzhou under Grant Nos. 200J1-C0031 and 2004J1-C0226, and Education Bureau of Guangzhou under Grant No. 2024
文摘The influence of electron-phonon interactions on third-harmonic generation in a square quantum well is investigated. The first- and third-harmonic generation coefficient is obtained by using compact-density-matrix approach and iterative method, and the numerical results are presented for a GaAs square quantum well. The results show that the third-harmonic generation coefficient is obviously enhanced after considering the influence of electron-phonon interactions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11264027 and 11364030)the Project of Prairie Excellent Specialist of Inner Mongolia,Chinathe "Thousand,Hundred and Ten" Talent Training Project Foundation of Inner Mongolia Normal University,China(Grant No.RCPY-2-2012-K-039)
文摘We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.
文摘Traditional ligand-field theory has to be improved by taking into account both 'pure electronic' contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, R1, R2, R'3, R'2, and R'1 lines, U band, ground-state zero-field-splitting (GSZFS), and ground-state g factors of ruby and/or GSGG: Cr3+ as well as thermal shifts of GSZFS, R1 line and R2 line of ruby have been calculated.The results are in very good agreement with the experimental data. Moreover, it is found that the value of cubic-field parameter given by traditional ligand-field theory is inappropriately large. For thermal shifts of GSZFS, R1 line and R2 line of ruby, several conclusions have also been obtained.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao(No.11-1-4-95-jch)
文摘Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy fi eld and mean fl ow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean fl ow to the eddy fi eld in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy fi eld and mean fl ow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they fl ank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean fl ow to the eddy fi eld.
基金Project supported by the National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(No.2009BAG12A01-A03-2)the National Natural Science Foundation of China(Nos.10972196,11090333,11172273,and 11321202)
文摘In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.
基金Project supported by the national Natural Science Foundation of China (Grant No 10674114).
文摘The potential energy curves (PECs) of the ground state (^3∏) and three low-lying excited states (^1∑, ^3∑,^1∏) of CdSe dimer have been studied by employing quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs, the vibrational levels of the four states are determined by solving the Schrodinger equation of nuclear motion, and corresponding spectroscopic constants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the ^3∏ state, of which the dissociation asymptote is Cd(^1S) + Se(^3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm^-1 above the ground state and the ^3∑ state is the highest in the four calculated states.
基金financially supported by the Scientific Research Fund of Heilongjiang Provincial Education Department(Grant No.12541132)the Natural Science Youth Foundation of Heilongjiang Province of China(Grant No.QC2015082)
文摘Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves' amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.
基金This work was financially supported by the Key Technologies R&D Program of Tianjin(No.06YFGZGX02400).
文摘Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally.The fouling was analyzed by scanning electron microscopy(SEM)and energy dispersive X-ray detector(EDX).The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction.Some calcium ions of calcium carbonate crystal are replaced by zinc ions,the growth of aragonite crystal nucleus is retarded,and the transition of calcium carbonate from aragonite to calcite is hampered.
基金Scientific Research Fired of the Education Department of Zhejiang Province of China
文摘The electron-phonon interaction influences on lineax and nonfineax optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential axe investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.
基金National Science & Technology Key ProgramNational Nature Science FOundation+1 种基金Chinese Academy of Sciences FoundationAnh
文摘Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification.
基金supported by the National Natural Science Foundation of China(No.22033006,No.21833006 and No.21773191)。
文摘The photo-induced ultrafast electron dynamics in both anatase and rutile TiO_(2) are investigated by using the Boltzmann transport equation with the explicit incorporation of electron-phonon scattering rates.All structural parameters required for dynamic simulations are obtained from ab initio calculations.The results show that although the longitudinal optical modes significantly affect the electron energy relaxation dynamics in both phases due to strong Fr?hlich-type couplings,the detailed relaxation mechanisms have obvious differences.In the case of a single band,the energy relaxation time in anatase is 24.0 fs,twice longer than 11.8 fs in rutile.This discrepancy is explained by the different diffusion distributions over the electronic Bloch states and different scattering contributions from acoustic modes in the two phases.As for the multiple-band situation involving the lowest six conduction bands,the predicted overall relaxation times are about 47 fs and 57 fs in anatase and rutile,respectively,very different from the case of the single band.The slower relaxation in rutile is attributed to the existence of multiple rate-controlled steps during the dynamic process.The present findings may be helpful to control the electron dynamics for designing efficient TiO_(2)-based devices.
基金supported by the National Science Foundation of China (10732050,10872115 and 11025208)Excellent Young Scholars Research Fund of Beijing Institute of Technology
文摘Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.
基金This work is supported by China Postdoctoral Science Foundation(2021M690798)Guizhou Province Science and Technology Plan Project(No.[2021]General 085)+1 种基金National Natural Science Foundation of China(No.61603034)the Fundamental Research Funds for the Central Universities(Nos.FRF-BD-19-002A,FRF-DF-20-14).
文摘With the increasing demand for petroleum resources and environmental issues,new energy electric vehicles are increasingly being used.However,the large number of electric vehicles connected to the grid has brought new challenges to the operation of the grid.Firstly,A novel bidirectional interaction model is established based on modulation theory with nonlinear loads.Then,the electric energy measuring scheme of EVs for V2G is derived under the conditions of distorted power loads.The scheme is composed of fundamental electric energy,fundamental-distorted electric energy,distorted-fundamental electric energy and distorted electric energy.And the characteristics of each electric energy are analyzed.Finally,the correctness of the model and energy measurement method is verified by three simulation cases:the impact signals,the fluctuating signals,and the harmonic signals.
基金Project supported by the Science Foundation of Henan Provincial Educational Committee,China(Grant Nos.2011A140015 and 12A140006)the Doctoral Research Fund of Henan Normal University,China(Grant No.525449)
文摘Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and byperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.
文摘Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0 K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substances such as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
基金the Scientific and Technology Project of Guangzhou Municipal Government under Grant No.2004J1-C0327
文摘The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing annular cylindrical quantum dot are derived within the framework of dielectric continuum approximation. It is found that there exist two types of SO phonon modes: top SO (TSO) mode and side SO(SSO) mode in a cylindrical quantum annulus. Numerical calculation on CdS annulus system has been performed. Results reveal that the two different solutions of SSO mode distribute mainly at the inner or outer surfaces of the annulus. The dispersion relations and the coupling intensions of phonons in a quantum annulus are compared with those in a cylindrical quantum dot. It is found that the dispersion relations of the two different structures are similar, but the coupling intension of the phonon-electron interaction in quantum annulus is larger than that in quantum dot. The Hamiltonians describing the free phonon modes and their interactions with electrons in the system are also derived.
文摘A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.
基金This study was supported by the National Key R&D Program of China through Grant Nos.2018YFC1505901 and 2018YFA0606203the National Nature Science Foundation of China through Grant Nos.41922035,41575062,41520104008+1 种基金Key Research Program of Frontier Sciences of CAS through Grant No.QYZDB-SSW-DQC017the Youth Innovation Promotion Association,Chinese Academy of Sciences.The first author acknowledges the support from the China Scholarship Council(CSC)Grant No.201904910516.
文摘A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection.
文摘The through-space and through-bond interactions of molecular orbitals in [2,2] paracyclophane are studied by the approved MS-X. method with overlapping atomic-sphere. The calculation results show the through-space interactions are exponential flareout with increasing of the distance of two orbitals, and.both through-space interactions and through-bond interactions are sizable but those two interactions oppose each other causing the net splitting to be small. Transition-state procedure was used to calculate ionization potentials, the results are in agreement with the PE-spectra.