Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
Effect of different Mn and Mo contents on microstructure and mechanical properties of Al-Si-Cu-Mg-0.6Fe alloy was studied.Results indicate that the increase of Mo and decrease of Mn lead to a decrease in the size of ...Effect of different Mn and Mo contents on microstructure and mechanical properties of Al-Si-Cu-Mg-0.6Fe alloy was studied.Results indicate that the increase of Mo and decrease of Mn lead to a decrease in the size of theα-Al_(15)(FeMnMo)_(3)Si_(2) phase formed during solidification.Theα-Al_(15)(FeMnMo)_(3)Si_(2) phase reaches a minimum value of about 16.3μm at 0.2wt.%Mo and 0.1wt.%Mn addition.After solution treatment,theα-Al(FeMnMo)Si dispersed phase is precipitated.When only Mn is added,theα-Al(FeMnMo)Si dispersed phase mainly distributes near the grain boundaries,while when only Mo is added,it primarily distributes in the central region of the matrix.When both Mn and Mo are added,the dispersed phase has a larger and denser dispersed region and is uniformly distributed near the Al matrix and grain boundaries.Moreover,the best overall mechanical properties of the alloy are obtained with the combined addition of 0.1wt.%Mn and 0.2wt.%Mo,due to the smaller size ofα-Al_(15)(FeMnMo)_(3)Si_(2) phase and the larger area fraction and higher density of theα-Al(FeMnMo)Si dispersed phase.The yield strength,ultimate tensile strength,and elongation are respectively improved 67.7 MPa,48.5 MPa and 5.3%,respectively,compared to that of the alloy with only 0.3wt.%Mn.展开更多
The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and micro...The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.展开更多
A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse r...A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts ex- hibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products de- viated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.展开更多
The effect of Al in Ti-microalloyed welding wire on microstructure and toughness of deposited metals is studied.The results show that the deposited metal toughness worsens with increasing Al in wire' The mechanis...The effect of Al in Ti-microalloyed welding wire on microstructure and toughness of deposited metals is studied.The results show that the deposited metal toughness worsens with increasing Al in wire' The mechanism of Al is as follows:(1) Al makes oxygen content in deposited metal increase.(2)Al restrains the formation of Ti-rich oxide inclusion, which causes granular bainite microstructure in deposited metal.(3)The content of solute Ti in deposited metal increases with Al content in welding wire,as a result,a part of carbonrich constitution in deposited metal is in the form of twin martensite.展开更多
A novel method for testing stress–strain curves of non-metallic materials was presented.The high temperature stress-strain curves of MnS were preliminarily obtained and corrected to account for the influence of frict...A novel method for testing stress–strain curves of non-metallic materials was presented.The high temperature stress-strain curves of MnS were preliminarily obtained and corrected to account for the influence of friction.Using the finite element method,the influence of deformation parameters on the deformation evolution of MnS inclusions was investigated based on the experimental reference data.The corresponding physical experiment was designed for comparative analysis.The results indicate that the experimental high-temperature deformation data of MnS are highly reliable.In the process of matrix deformation,the shapes of MnS inclusions change from spherical to ellipsoidal and even to lamellar.There are some differences in the morphological deformation of MnS inclusions located at different positions.With the increase in the initial size of MnS inclusions,the risk of failing the inclusion-flaw inspection increases and the forging quality further deteriorates.展开更多
This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2...This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.展开更多
The thermal fatigue property of Cr-W-Mo-Ni-Mn-RE ferric-base hardfacing layer was investigated. The results show that the generation and propagation of thermal fatigue cracks prefer the parts of oxidation and etching ...The thermal fatigue property of Cr-W-Mo-Ni-Mn-RE ferric-base hardfacing layer was investigated. The results show that the generation and propagation of thermal fatigue cracks prefer the parts of oxidation and etching of the grain boundary, the joint efforts of cycle stress and oxidation at high temperatures are the main factors in the generation and propagation of thermal fatigue cracks. When the temperatures is below 600 ℃, the Cr-W-Mo-Ni-Mn-RE ferric-base hardfacing layer has higher ability of thermal fatigue resistance. The function of the alloy and rare earth elements was discussed.展开更多
In this study,four groups of thin plate samples with a wall thickness of 2.2mm,2.5mm,2.7mm,and 3.0mm are prepared by ultra-high vacuum die casting.The effects of Mn,Mg,and Mn/Mg ratio on the microstructure and mechani...In this study,four groups of thin plate samples with a wall thickness of 2.2mm,2.5mm,2.7mm,and 3.0mm are prepared by ultra-high vacuum die casting.The effects of Mn,Mg,and Mn/Mg ratio on the microstructure and mechanical properties of samples with different wall thicknesses are obtained by different test and analysis methods.The results show that as the content of Mn is 0.4%~0.65%,the content of Mg is 0.17%~0.5%,and the Mn/Mg ratio reaches 1.69~1.90,the tensile strength,yield strength,and elongation of HL-111 alloy with a wall thickness of 2~3mm can reach more than 280MPa,120MPa and 10%respectively,and the mechanical properties of the material are greatly improved.In addition,the tensile strength,yield strength,and elongation of HL-111 alloy after T5 heat treatment at 165℃for 510min reach 302.36 MPa,190.32 MPa,and 8.42%.The precipitated phase of Mg2Si leads to changes in strength and elongation.展开更多
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the...The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.展开更多
The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be res...The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be restrained by adding a certain amount of RE.According to the results,the n and Q were calculated and the mechanism of the refinement of austenite grains was discussed.展开更多
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金This work was financially supported by the Key Research and Development Program of Shandong Province(No.2021SFGC1001)the National Natural Science Foundation of China(No.U1864209).
文摘Effect of different Mn and Mo contents on microstructure and mechanical properties of Al-Si-Cu-Mg-0.6Fe alloy was studied.Results indicate that the increase of Mo and decrease of Mn lead to a decrease in the size of theα-Al_(15)(FeMnMo)_(3)Si_(2) phase formed during solidification.Theα-Al_(15)(FeMnMo)_(3)Si_(2) phase reaches a minimum value of about 16.3μm at 0.2wt.%Mo and 0.1wt.%Mn addition.After solution treatment,theα-Al(FeMnMo)Si dispersed phase is precipitated.When only Mn is added,theα-Al(FeMnMo)Si dispersed phase mainly distributes near the grain boundaries,while when only Mo is added,it primarily distributes in the central region of the matrix.When both Mn and Mo are added,the dispersed phase has a larger and denser dispersed region and is uniformly distributed near the Al matrix and grain boundaries.Moreover,the best overall mechanical properties of the alloy are obtained with the combined addition of 0.1wt.%Mn and 0.2wt.%Mo,due to the smaller size ofα-Al_(15)(FeMnMo)_(3)Si_(2) phase and the larger area fraction and higher density of theα-Al(FeMnMo)Si dispersed phase.The yield strength,ultimate tensile strength,and elongation are respectively improved 67.7 MPa,48.5 MPa and 5.3%,respectively,compared to that of the alloy with only 0.3wt.%Mn.
文摘The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.
文摘A series of Mn-doped K-Co-Mo catalysts were prepared by a sol-gel method. The catalyst structure was well characterized by X-ray diffraction, N2 physisorption, NH3 temperature- programmed adsorption, in situ diffuse reflectance infrared Fourier transform spectroscopy, and X-ray absorption fine structure spectroscopy. The catalytic performance for higher alcohol synthesis from syngas was measured. It was found that the Mn-doped catalysts ex- hibited a much higher activity as compared to the unpromoted catalyst, and in particular the C2+ alcohol selectivity increased significantly. The distribution of alcohol products de- viated from the Anderson-Schulz-Flory law. The portion of methanol in total alcohol was suppressed remarkably and the ethanol became the predominant product. Characterization results indicated that the incorporation of Mn enhanced the interaction of Co and Mo and thus led to the formation of Co-Mo-O species, which was regarded as the active site for the alcohol synthesis. Secondly, the presence of Mn reduced the amount of strong acid sites significantly and meanwhile promoted the formation of weak acid sites, which had a positive effect on the synthesis of alcohol. Furthermore, it was found that the incorporation of Mn can enhance the adsorption of linear- and bridge-type CO significantly, which contributed to the formation of alcohol and growth of carbon chain and thus increased the selectivity to C2+OH.
文摘The effect of Al in Ti-microalloyed welding wire on microstructure and toughness of deposited metals is studied.The results show that the deposited metal toughness worsens with increasing Al in wire' The mechanism of Al is as follows:(1) Al makes oxygen content in deposited metal increase.(2)Al restrains the formation of Ti-rich oxide inclusion, which causes granular bainite microstructure in deposited metal.(3)The content of solute Ti in deposited metal increases with Al content in welding wire,as a result,a part of carbonrich constitution in deposited metal is in the form of twin martensite.
基金Projects(51575475,51675465) supported by the National Natural Science Foundation of China
文摘A novel method for testing stress–strain curves of non-metallic materials was presented.The high temperature stress-strain curves of MnS were preliminarily obtained and corrected to account for the influence of friction.Using the finite element method,the influence of deformation parameters on the deformation evolution of MnS inclusions was investigated based on the experimental reference data.The corresponding physical experiment was designed for comparative analysis.The results indicate that the experimental high-temperature deformation data of MnS are highly reliable.In the process of matrix deformation,the shapes of MnS inclusions change from spherical to ellipsoidal and even to lamellar.There are some differences in the morphological deformation of MnS inclusions located at different positions.With the increase in the initial size of MnS inclusions,the risk of failing the inclusion-flaw inspection increases and the forging quality further deteriorates.
文摘This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.
文摘The thermal fatigue property of Cr-W-Mo-Ni-Mn-RE ferric-base hardfacing layer was investigated. The results show that the generation and propagation of thermal fatigue cracks prefer the parts of oxidation and etching of the grain boundary, the joint efforts of cycle stress and oxidation at high temperatures are the main factors in the generation and propagation of thermal fatigue cracks. When the temperatures is below 600 ℃, the Cr-W-Mo-Ni-Mn-RE ferric-base hardfacing layer has higher ability of thermal fatigue resistance. The function of the alloy and rare earth elements was discussed.
文摘In this study,four groups of thin plate samples with a wall thickness of 2.2mm,2.5mm,2.7mm,and 3.0mm are prepared by ultra-high vacuum die casting.The effects of Mn,Mg,and Mn/Mg ratio on the microstructure and mechanical properties of samples with different wall thicknesses are obtained by different test and analysis methods.The results show that as the content of Mn is 0.4%~0.65%,the content of Mg is 0.17%~0.5%,and the Mn/Mg ratio reaches 1.69~1.90,the tensile strength,yield strength,and elongation of HL-111 alloy with a wall thickness of 2~3mm can reach more than 280MPa,120MPa and 10%respectively,and the mechanical properties of the material are greatly improved.In addition,the tensile strength,yield strength,and elongation of HL-111 alloy after T5 heat treatment at 165℃for 510min reach 302.36 MPa,190.32 MPa,and 8.42%.The precipitated phase of Mg2Si leads to changes in strength and elongation.
基金supported by the National Natural Science Foundation of China(No.51874084)the Fundamental Research Funds for the Central Universities(No.2125026)。
文摘The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.
文摘The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be restrained by adding a certain amount of RE.According to the results,the n and Q were calculated and the mechanism of the refinement of austenite grains was discussed.