期刊文献+
共找到338篇文章
< 1 2 17 >
每页显示 20 50 100
Focal Mechanism Solutions and Stress Field Inversion of Moderately Strong Earthquakes in the Northern Tianshan Area
1
作者 Long Haiying Gao Guoying Nie Xiaohong Li Yinzhen 《Earthquake Research in China》 2008年第4期374-382,共9页
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism sol... Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area,we carried out system cluster and stress field inversion analysis.The result indicates that,the focal mechanism solutions of moderately strong earthquakes are mainly dip-slip reverse faulting in the northern Tianshan area.The principal rupture planes of earthquakes are NW-oriented.It is basically consistent with the strike of earthquake structure in its adjacent area.The direction of the principal compression stress P axis is nearly NS,and its inclination angle is small;while the inclination angle of the principal extensional stress T axis is large.It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress.The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west. 展开更多
关键词 Northern Tianshan area Moderately strong earthquake focal mechanism solution System cluster Stress field inversion
下载PDF
Types of focal mechanism solutions and parameter consistency of the sub-blocks in Sichuan and Yunnan Provinces
2
作者 程万正 阮祥 张永久 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第6期605-619,共15页
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S... Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults. 展开更多
关键词 focal mechanism solution dynamic stress field dislocation type of earthquake source consistency parameter Sichuan-Yunnan block
下载PDF
Variation Characteristics of Focal Mechanisms of Small Earthquakes before Four Strong Earthquakes in Xinjiang
3
作者 Nie Xiaohong Wang Qiong 《Earthquake Research in China》 2014年第2期210-218,共9页
With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical comp... With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth. 展开更多
关键词 small earthquake focal mechanism solution System clustering Type of earthquake Principal compressive stress axes deflection
下载PDF
Study on the focal mechanism of the M5. 1 Badong earthquake in Hubei 被引量:5
4
作者 Chen Junhua Zhao Lingyun Wu Haibo 《Geodesy and Geodynamics》 2014年第1期47-54,共8页
The focal mechanism solutions of the MS. 1 Badong earthquake and subsequent 34 aftershocks at ML 2.0 or more were calculated using the P-wave first motion method; the main earthquake was normal fault dip slip type, an... The focal mechanism solutions of the MS. 1 Badong earthquake and subsequent 34 aftershocks at ML 2.0 or more were calculated using the P-wave first motion method; the main earthquake was normal fault dip slip type, and the slip types of the seismogenic rupture surfaces of the subsequent aftershocks primarily include normal dip slip (14 times), reverse dip slip (9 times), normal strike slip (9 times) and reverse strike slip (2 times). The MS. 1 Badong earthquake activities may be related to the stress adjustment caused by the rise of the groundwater level and the decrease of the frictional resistance between structural planes of rock forma- tions due to the effect of reservoir water penetration, and related to the joint activities of the NE-strike Gaoqiao fault and the near EW-strike Daping fault. 展开更多
关键词 M5.1 Badong earthquake P-wave first motion moderate and small earthquakes focal mecha-nism solution
下载PDF
Spatio-temporal variation and focal mechanism of the Wenchuan M_S8.0 earthquake sequence 被引量:3
5
作者 Wanzheng Cheng Zhiwei Zhang Xiang Ruan 《Earthquake Science》 CSCD 2009年第2期109-117,共9页
Based on abundant aftershock sequence data of the Wenchuan Ms8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along... Based on abundant aftershock sequence data of the Wenchuan Ms8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 krn and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of afiershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because afiershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake. 展开更多
关键词 Wenchuan earthquake strong aftershock spatio-temporal variation focal mechanism solution
下载PDF
A priliminary study on the sequence characteristics and focal mechanism solution of the Jiashi strong earthquake swarm 被引量:2
6
作者 XIN YANG GUO YING GAO Seismological Bureau of Xinjiang Uygur Autonomous Region, rümqi 830011, China 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第6期16-23,共8页
The sequence characteristics and focal mechanism solution of the Jiashi, Xinjiang strong earthquake swarm are analyzed and studied in this paper. The result shows that before the M S=6.6 earthquake, value h o... The sequence characteristics and focal mechanism solution of the Jiashi, Xinjiang strong earthquake swarm are analyzed and studied in this paper. The result shows that before the M S=6.6 earthquake, value h of sequence frequency attenuation coefficient was less than 1, then value h was more than 1. Before occurrence of M S6.0 earthquakes the energy is released either in a continuously strengthened way or a sharply strengthened way, and before M S5.0 earthquakes the sequence frequency shows calm. The study on the focal mechanism solution of the strong earthquake swarm shows that the source faults are mainly in a right lateral, strike slip way and the faults have characteristics of tensor shear. 展开更多
关键词 earthquake swarm sequence characteristics focal mechanism SOLUTION focal displacement feature JIASHI
下载PDF
Stripe of normal mechanisms for crustal earthquakes with M ≤ 3.5 flanking the western side of the thrust front zone in the Andes backarc 被引量:2
7
作者 Silvina Nacif Enrique Triep +1 位作者 Renzo Furlani Silvana Spagnotto 《Natural Science》 2013年第8期18-26,共9页
Earthquakes with magnitudes M ≤ 3.5 were registered in the Andes backarc between ~32.5°S 33.75°S within a temporary experiment from November 2002 to March 2003. Data were collected from 15 seismological bro... Earthquakes with magnitudes M ≤ 3.5 were registered in the Andes backarc between ~32.5°S 33.75°S within a temporary experiment from November 2002 to March 2003. Data were collected from 15 seismological broad band stations, deployed above flat subduction section and also above the transitional to normal section of the Nazca plate. Seismic events were located mostly in part of the Southern Precordillera and Cerrilladas Pedemontanas of Mendoza Province. Focal mechanism solutions were obtained, for selected data between15 kmand35 kmdepths, from P wave first motion using FOCMEC software. A band trending NW-NNW of normal focal mechanism earthquakes is located just by the thrust front towards West, and covers the Southern tip of the Southern Precordillera and the Western side of the Cerrilladas Pedemontanas, Mendoza Province, Argentina. Thrust focal mechanism solutions obtained in the present work for events with magnitude less than or equal to 3.5 also show that the thrust front South of ~33.1°S is located in the same place as Mw ≥ 3.6 earthquakes. The most significant findings in this work are these signals of extensional regimen which appear in a compressional subduction tectonic regimen. Nevertheless the short temporal experiment precludes firm interpretations about this particular phenomenon. Probably it is related to a temporary stress relaxation. The normal earthquakes are likely associated to normal faults, and/or to their subsidiaries, that were inverted by contraction and now re-inverted at least transitorily as normal. These faults, which are near and to the East of the suture between Chilenia and Cuyania Paleozoic terranes, were originally involved in the Cuyo Triassic basin formation. 展开更多
关键词 small MAGNITUDES SEISMICITY NORMAL focal mechanism solutions NORMAL Fault Activation Regional Compressional Regime
下载PDF
Temporal evolution of the focal mechanism consistency of the 2021 Yangbi M_(S) 6.4 earthquake sequence in Yunnan 被引量:2
8
作者 Xiaobin Li Mingpei Jin +3 位作者 Ya Huang Wenjian Cha Jun Wang Sihai Li 《Earthquake Research Advances》 CSCD 2022年第2期11-20,共10页
Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum ... Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle.Our results indicate that the M_(S)6.4 mainshock is induced by a lateral strike slip fault(with a rake angle of~-165°)and a little normal-faulting component event along a nearly vertical plane(dipping angle~79° and strike~138°).Combining our results with high resolution catalog,we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault.The focal mechanism evolution can be divided into three periods.During the first period,the foreshock sequence,the focal mechanism consistency is the highest(KA<36°);during the second period which is shortly after the mainshock,the focal mechanism shows strong variation with KA ranging from 8° to 110°;during the third period,the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period(18°<KA<73°).We suggest that the KA,to some extent,represents the coherence between local tectonic stress regime and the stress state of each individual earthquake.Furthermore,high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence. 展开更多
关键词 Cut and Paste focal mechanism solution Consistency parameters Aftershock spreading Seismogenic fault Earthquake trend the Yangbi M_(S)6.4 earthquake in 2021
下载PDF
Focal Mechanism of the Xianyou Earthquake Sequence,Fujian,China
9
作者 Qiu Yi Li Jun +1 位作者 Kang Lanchi Yuan Liwen 《Earthquake Research in China》 2014年第4期532-541,共10页
1,209 earthquakes occurred in Xianyou,Fujian from August 4,2010 to October 4,2013.The largest earthquake was M L5. 0 on September 4,2013. In order to study the Xianyou earthquake sequence and understand the causative ... 1,209 earthquakes occurred in Xianyou,Fujian from August 4,2010 to October 4,2013.The largest earthquake was M L5. 0 on September 4,2013. In order to study the Xianyou earthquake sequence and understand the causative structure and stress field of Xianyou,the focal mechanism solutions of six earthquakes( M L> 3. 5) in the Xianyou earthquake sequence are calculated using the broadband digital data of the Fujian Seismic Network with the seismic moment tensor inverse method. The results show that the focal faults of the six earthquakes are similar,which are all strike-slip faults striking to the northwest with high dip angles. The direction of the principal compressive stress axes is near SN,which is different from the stress field of Fujian region. The Xianyou earthquake sequence may have been induced by the stress adjustment after the impoundment of Jinzhong reservoir. 展开更多
关键词 Xianyou earthquake Fujian focal mechanism solution Moment tensor INVERSION
下载PDF
Focal Mechanism Solution of the 2011 M_S4.8 Anqing Earthquake Determined from the CAP Method
10
作者 Hong Dequan Wang Xingzhou +2 位作者 Han Libo Qi Hao Zhang Bing 《Earthquake Research in China》 2012年第2期268-276,共9页
In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°... In this article, we have inverted local broadband waveform data to determine the focal mechanism of the 2011 Ms4.8 Anqing earthquake. Our results show that the best double couple solution of the Ms4.8 event is 16°, 74° and 120° for strike, dip and rake angles of one nodal plane respectively, and 131 °, 33°, 30° for the other nodal plane. The estimated focal depth is about 3kin. Both strikes of the two nodal planes differ significantly to the strike of Susong-Zongyang fault, along which seismic activity has been at a low level since the Late Quaternary. This implies that this earthquake may not have occurred on the Susong-Zongyang fault, and we infer that a buried fault with strike of NNE may be the seismogenic structure of this event. 展开更多
关键词 Anqing earthquake Cut And Paste method focal mechanism solution
下载PDF
Focal mechanism solution statistics of seismic tsunami sources
11
作者 侯京明 徐志国 《Marine Science Bulletin》 CAS 2015年第1期40-49,共10页
In recent years, tsunami happens frequently in the world, which caused huge losses. In order to find objective features of tsunamigenic source, global CMT data from 1976 to 2010 and tsunami data from NOAA are analyzed... In recent years, tsunami happens frequently in the world, which caused huge losses. In order to find objective features of tsunamigenic source, global CMT data from 1976 to 2010 and tsunami data from NOAA are analyzed statistically, tsunami is compared with bigger tsunamis. At last, some features of seismic tsunami sources are concluded. 展开更多
关键词 tsunamigenic earthquake focal mechanism solution FEATURE
下载PDF
Spatio-temporal variation of the stress field in the Wenchuan aftershock region 被引量:3
12
作者 Feng Long Guixi Yi +1 位作者 Xueze Wen Zhiwei Zhang 《Earthquake Science》 CSCD 2012年第5期517-526,共10页
Focal mechanism solutions and centroid depths of 312 M≥4 aftershocks from the 2008 Wenchuan earthquake sequence have been derived by CAP (Cut and Paste) method from broadband waveform data with relatively high sign... Focal mechanism solutions and centroid depths of 312 M≥4 aftershocks from the 2008 Wenchuan earthquake sequence have been derived by CAP (Cut and Paste) method from broadband waveform data with relatively high signal-to-noise ratio (SNR). Following this, we have analyzed the distribution of focal depths and the stress tensors, as well as the types of focal mechanisms. The major results are: (1) different cross-sections show that the depth ranges of the aftershocks at the southern and northern ends of the aftershock area along the Longmenshan fault zone are wider than those on the central segment, where rare M≥4 aftershocks occurred at depths shallower than 10 kin. The main faults trend to the NW on the southern and central segments, and for the northern segment, no dominant trend direction has been determined; (2) stress tensor distribution demonstrates that the majority of the aftershock areas on the cross-section along the major axis are mainly under compressive stress perpendicular to the profile; however, for the areas near Lixian, Beichuan, Qingchuan and the shallow parts of its northern segment, large principal stress components are parallel to the major axis profile direction. On the cross-sections perpendicular to the major axis, the three areas above can be divided into two parts: one with dominantly compressional stress near the major faults of the Longmenshan fault zone on the SE side, and the other with NE-direction push along the fault zone on the NW side; (3) the stress tensor distribution in map view is very similar to those on the vertical cross-sections. In map view, the orientation of the principal compressional stress axis $1 on the central segment of the aftershock area presents an SE-trending arc shape; (4) the stress tensor slices at different depths show that the orientation of S1 axis mainly changes on the central segment and at the northern end, indicating that the two segments have different seismogenic structures at different depths; (5) with the exception of the northern end of the aftershock region, the orientation of the $1 axis changes little during the early and late stages, illustrating the seismogenic structures are relatively stable; (6) preliminary analyses for the seismogenic structures at the northern end indicated that deeper strike-slip quakes occurred on the ENE-striking branch at first, and then the NNE-striking branch faults at the northern end were activated and generated a series of relatively shallow strike-slip earthquakes due to subsequent stress-triggering; (7) the aftershock triggering mechanism that occurred near Lixian is different between the shallow and deep depths, and between the early and late stages, indicating that the main faults and the branch faults responsible for aftershocks are at different depths. Consequently, the relaxation effect of the main shock particularIy impacts the branch faults. 展开更多
关键词 Wenchuan earthquake sequence focal depth focal mechanism solution stress tensor stress field
下载PDF
The seismicity and tectonic stress field characteristics of the Longmenshan fault zone before the Wenchuan M_S8.0 earthquake 被引量:3
13
作者 Zhiwei Zhang Wanzheng Cheng +1 位作者 Xiang Ruan Peng Wu 《Earthquake Science》 CSCD 2009年第2期119-128,共10页
The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile s... The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake. 展开更多
关键词 Wenchuan earthquake Longmenshan fault zone focal mechanism solution tectonic stress field
下载PDF
Fault plane parameters of Tancheng M81/2 earthquake on the basis of present-day seismological data 被引量:10
14
作者 Cuiying Zhou Guiling Diao +4 位作者 Jie Geng Yonghong Li Ping Xu Xinliang Hu Xiangdong Feng 《Earthquake Science》 CSCD 2010年第6期567-576,共10页
The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological ... The great Tancheng earthquake of M81/2 occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method. The inversion results are as follows: the strike is 21.6°, the dip angle is 89.5°, the slip angle is 170°, the fault length is about 160 km, the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km. This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust. Moreover, the surface seismic fault, intensity distribution of the earthquake, earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result. 展开更多
关键词 Tancheng M81/2 earthquake present-day moderate-small earthquakes double-difference earthquake loca-tion method focal mechanism fault plane parameters
下载PDF
A tectonic stress map of China and adjacent regions from earthquakes occurred during 2000~2004
15
作者 郑中华 陈永顺 《Acta Seismologica Sinica(English Edition)》 CSCD 2006年第3期344-349,共6页
Earthquake focal mechanism solutions provide the basic information about the present-day regional tectonics stress distribution, which controls the activities of crustal faults. Therefore, continued efforts for updati... Earthquake focal mechanism solutions provide the basic information about the present-day regional tectonics stress distribution, which controls the activities of crustal faults. Therefore, continued efforts for updating the database of earthquake focal mechanism solutions are quite valuable and important. 展开更多
关键词 tectonic stress map earthquake focal mechanism solutions short time period deep earthquake
下载PDF
Relocation of the MS 5.7 Earthquake Sequence in Songyuan,Jilin Province,2018 and the Analysis of Its Seismogenic Structure
16
作者 An Yanru Zhang Yingying +2 位作者 Yang Zhigao Bai Lanshu Liu Jie 《Earthquake Research in China》 CSCD 2018年第4期491-500,共10页
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the wavefo... The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone. 展开更多
关键词 Songyuan Jilin MS5.7 EARTHQUAKE focal mechanism solution EARTHQUAKE RELOCATION Fuyu-Zhaodong fault Seismic activity
下载PDF
Discussion on the Precise Relocation and Seismo-Tectonics of the Jiujiang-Ruichang Earthquake
17
作者 Tu Jian Ni Sidao +2 位作者 Shen Xiaoqi Gao Jianhua Zeng Xinfu 《Earthquake Research in China》 2008年第1期42-51,共10页
Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the foc... Based on relocating the Jiujiang-Ruichang earthquake sequence which occurred on November 26, 2005 in Jiangxi Province with the double-difference (DD) algorithm and master event technique, the paper discusses the focal mechanism of the main shock (MsS.7) and the probable seismo-tectonics. The precise relocation results indicate that the average horizontal error is 0.31kin in a EW direction and 0.40kin in a NS direction, and the average depth error is 0.48kin. The focal depths vary from 8kin to 14kin, with the predominant distribution at 10kin - 12kin. The epicenter of the main shock is relocated to be 29.69^oN, 115.74^oE and the focal depth is about 10.Skin. Combining the predominant distribution of the earthquake sequence, the focal mechanism of the main shock and the tectonic conditions of N-E- and NW-strike faults growth in the seismic region, we infer that the main shock of the earthquake sequence was caused by a NW striking buried fault in the Rnichang basin. The nature of seismic faults needs to be further explored. 展开更多
关键词 Jiujiang-Ruichang earthquake Double-difference earthquake location algorithm Master event technique focal mechanism solution Seismo-tectonics
下载PDF
Apparent Stress Changes of the 2010 Luanxian Earthquake Sequence
18
作者 Li He Liu Wenbing +4 位作者 Wang Yixi Zhang Jieqing Gao Ye Kang Jian Zhang Changxuan 《Earthquake Research in China》 CSCD 2015年第3期293-302,共10页
On March 6,2010,an earthquake of M L4. 5 took place in Luanxian,Hebei Province,with plenty of foreshocks and aftershocks. From December 2009 to March 2010,a series of M L≥ 2. 5 earthquakes were recorded by the digita... On March 6,2010,an earthquake of M L4. 5 took place in Luanxian,Hebei Province,with plenty of foreshocks and aftershocks. From December 2009 to March 2010,a series of M L≥ 2. 5 earthquakes were recorded by the digital seismic network of the capital region,which were selected to calculate the apparent stress in this region. The results show that,firstly,a high value anomaly of apparent stress appeared before the M L4. 5 and peak value appeared on the main shock, which then decreased after the ML4. 5 earthquake. The apparent stress of the main shock is much greater than that of most aftershocks,the sequence type is considered as a main shock-aftershock. Secondly,the size of apparent stress perfectly reflects the state of the stress field in the hypocenter region,and we can discuss seismic sequence properties through the changing process of apparent stress,in combination with the traditional methods to identify a sequence more accurately. Finally,in the case of magnitude less than or equal to M L3. 3,correlation between magnitude and apparent stress is positive. 展开更多
关键词 Apparent stress focal mechanism solution Luanxian earthquake sequence
下载PDF
Constraining the focal mechanism of the Lushan earthquake with observations of the Earth's free oscillations 被引量:9
19
作者 JIANG Ying HU XiaoGang +1 位作者 LIU ChengLi SUN HePing 《Science China Earth Sciences》 SCIE EI CAS 2014年第9期2064-2070,共7页
The amplitudes of the Earth's free oscillations have a close relationship to earthquake focal mechanisms. Focal mechanisms of large earthquakes can be well analyzed and constrained with observations of long period fr... The amplitudes of the Earth's free oscillations have a close relationship to earthquake focal mechanisms. Focal mechanisms of large earthquakes can be well analyzed and constrained with observations of long period free oscillations. Although the 2013 Lushan earthquake was only moderately sized, observable spherical normal modes were excited and clearly observed by a su- perconductive gravimeter and a broadband seismometer. We compare observed free oscillations with synthetic normal modes corresponding to four different focal mechanisms for the Lushan earthquake. The results show that source parameters can be analyzed and constrained by spherical normal modes in a 2.3-5 mHz frequency band. The scalar seismic moment M~ has a major influence on the amplitudes of free oscillations; additionally, the strike, dip, rake and depth of the hypocenter have mi- nor influences. We found that the synthetic modes corresponding to the focal mechanism determined by the Global Centroid Moment Tensor show agreement to the observed modes, suggesting that earthquake magnitudes predicted in this way can readily reflect the total energy released by the earthquake. The scalar seismic moment obtained by far-field body wave inver- sion is significantly underestimated. Focal mechanism solutions can be improved by joint inversion of far- and near-field data. 展开更多
关键词 Lushan earthquake focal mechanism solutions Earth's free oscillations superconductive gravimeter observations broadband seismograph observations
原文传递
The 2018 M_S 5.9 Mojiang Earthquake:Source model and intensity based on near-field seismic recordings 被引量:4
20
作者 Xu Zhang Zhen Fu +2 位作者 LiSheng Xu ChunLai Li Hong Fu 《Earth and Planetary Physics》 CSCD 2019年第3期268-281,共14页
On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftersh... On September 8, 2018, an M_S 5.9 earthquake struck Mojiang, a county in Yunnan Province, China. We collect near-field seismic recordings(epicentral distances less than 200 km) to relocate the mainshock and the aftershocks within the first 60 hours to determine the focal mechanism solutions of the mainshock and some of the aftershocks and to invert for the finite-fault model of the mainshock.The focal mechanism solution of the mainshock and the relocation results of the aftershocks constrain the mainshock on a nearly vertical fault plane striking northeast and dipping to the southeast. The inversion of the finite-fault model reveals only a single slip asperity on the fault plane. The major slip is distributed above the initiation point, ~14 km wide along the down-dip direction and ~14 km long along the strike direction, with a maximal slip of ~22 cm at a depth of ~6 km. The focal mechanism solutions of the aftershocks show that most of the aftershocks are of the strike-slip type, a number of them are of the normal-slip type, and only a few of them are of the thrust-slip type.On average, strike-slip is dominant on the fault plane of the mainshock, as the focal mechanism solution of the mainshock suggests, but when examined in detail, slight thrust-slip appears on the southwest of the fault plane while an obvious part of normal-slip appears on the northeast, which is consistent with what the focal mechanism solutions of the aftershocks display. The multiple types of aftershock focal mechanism solutions and the slip details of the mainshock both suggest a complex tectonic setting, stress setting, or both. The intensity contours predicted exhibit a longer axis trending from northeast to southwest and a maximal intensity of Ⅷ around the epicenter and in the northwest. 展开更多
关键词 2018 MS 5.9 Mojiang EARTHQUAKE NEAR-FIELD SEISMIC RECORDING finite-fault model INTENSITY prediction focal mechanism solution
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部