Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitativ...Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).展开更多
Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudoge...Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudogenes to clarify ifhTRF1 mutation is one of the factors of the activation of telomerase. Methods: hTRFlcDNA sequences were obtained from GenBank, its genome structure and pseudogenes were forecasted by BLAST and other biology information programs and then testified by sequencing. Real-time RT-PCR was used to detect the expression of h TRFlmRNA in 10 cell line cells, including myelogenous leukemia cell lines K562, HL-60, U-937, NB4, THP-I, HEL and Dami; lymphoblastic leukemia cell lines 6T-CEM, Jurkat and Raji. Telomerase activities of cells were detected by using telomeric repeat amplification (TRAP)-ELISA protocol. PCR and sequencing were used to detect mutation of each exon ofhTRF1 in 10 cell line cells. Results: hTRF1 gene, mapped to 8q13, was divided into 10 exons and spans 38.6 kb. Four processed pseudogenes ofhTRF1 located on chromosome 13, 18, 21 and X respectively, was named as ψhTRFI-13, ψhTRFI-18, ψhTRF1-21 and ψhTRFI-X respectively. All cell line cells showed positive telomerase activity. The expression of hTRF1 was significantly lower in malignant hematopoietic cell lines cells (0.0338, 0.0108-0.0749) than in normal mononuclear cells (0.0493, 0.0369-0.128) (P=0.004). But no significant mutation was found in all exons of hTRF1 in 10 cell line cells. Four variants were found in part ofintron 1, 2 and 8 ofhTRF1. Their infection on gene function is unknown and needs further studies. Conclusion: hTRF1 mutation is probably not one of the main factors for telomerase activation in malignant hematopoietic disease.展开更多
<strong>Background:</strong> Dexpanthenol containing formula (BEPANTHEN<sup>®</sup>), formulated as a water in oil preparation, is currently widely marketed as a diaper care product aiming...<strong>Background:</strong> Dexpanthenol containing formula (BEPANTHEN<sup>®</sup>), formulated as a water in oil preparation, is currently widely marketed as a diaper care product aiming to protect baby’s buttocks and repair diaper dermatitis. Dexpanthenol is a well-known moisturizer with barrier-improving properties and the oily phase of the water in oil preparation forms a lipophilic film on the skin surface that isolates the skin from irritants (feces and urine). Prolonged contact with irritants triggers a local inflammation cascade responsible for the cutaneous erythema. To further investigate the protective properties of skin barrier preparations, we took advantage of an <i>ex vivo</i> model of healthy human skin discs especially designed to evaluate protective and/or repairing effects of topical preparations recommended for baby’s buttocks through the measurement of interleukin-1 alpha release (a cytokine considered as the <em>Primum movens</em> of the skin inflammatory reaction), following the application of different irritants. <strong>Methods: </strong>Healthy human skin discs have been incubated in the absence (control) or in the presence of two irritants,<em> i.e.</em> a “urine like + urease” preparation and sodium dodecyl sulfate, and in the presence of three ointments, one containing dexpanthenol, but not the other two. At the end of the incubation period, interleukin-1 alpha (IL-1<em>α</em>) was quantified in the explants culture media.<strong> Results: </strong>“Urine like + urease” preparation (ULU) and sodium dodecyl sulfate (SDS) both increased IL-1<em>α</em> production of skin explants by 181.1% (p < 0.001) and 88.3% (p < 0.001), respectively. The dexpanthenol containing formula significantly inhibited the ULU- and the SDS-induced IL-1<em>α</em> release by 67.42% (p < 0.001) and 46.55% (p < 0.001), respectively. Under the same experimental conditions, one of the formulas without dexpanthenol significantly inhibited the ULU-induced IL-1<em>α</em> release by 45.94% (p < 0.01) but not the SDS-induced one, and the other tested formulation displayed no significant effect on the IL-1<em>α</em> production regardless of the irritant applied. Moreover, the effect of the dexpanthenol containing formula on the ULU-induced IL-1<em>α</em> release was significantly higher than the effect of the other formula;a difference of 19.6 % (p < 0.05) was observed.<strong> Conclusion: </strong>Dexpanthenol containing formula (BEPANTHEN<sup>®</sup>) provides good protection of baby’s buttocks against irritants. Its protective effect seems to be superior compared with other products, which did not contain this ingredient. Moreover, the results obtained in the present study suggest that dexpanthenol displays <i>per se</i> a real IL-1<em>α</em> production inhibitory effect. This work, however, consists of preliminary studies and additional investigations involving more formulas and end-points such as the quantification of other pro- or anti-inflammatory cytokines and/or resolvins for example, are needed to better understand the cutaneous protective effect of dexpanthenol.展开更多
目的:利用酵母双杂交系统筛选与人POT1(human protection of telomeres 1,hPOT1)相互作用的蛋白。方法:以hPOT1的300~634氨基酸片段为诱饵,在人乳腺cDNA文库中筛选能与hPOT1相互作用的蛋白质;运用营养缺陷型培养基和X-α-Gal实验排除...目的:利用酵母双杂交系统筛选与人POT1(human protection of telomeres 1,hPOT1)相互作用的蛋白。方法:以hPOT1的300~634氨基酸片段为诱饵,在人乳腺cDNA文库中筛选能与hPOT1相互作用的蛋白质;运用营养缺陷型培养基和X-α-Gal实验排除假阳性,并对阳性克隆进行序列测定和比对。结果:经过酵母双杂交筛选,发现7个与hPOT1相互作用的蛋白;选取NM23B与hPOT1通过GST-pull down和免疫共沉淀进行进一步的验证,结果证明它们确实存在相互作用。结论:hPOT1能与NM23B发生相互作用,在此实验基础上可以进一步研究NM23B与hPOT1相互作用的生物学意义。展开更多
Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity ...Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity of mTOR are increased. At our knowledge, there is no published data on Cps correlated with ultraviolet radiation (UV) and blue light effects in human cells regarding telomeres’ length, progerin expression or mTOR1 complex activity. Objectives: In this study, we sought to assess 1) telomeres’ length in newborn human fibroblasts exposed to UV and blue light;2) progerin production in mature human normal fibroblasts exposed to UV;3) mTOR1 activation in adult human normal keratinocytes exposed to UV, analyzing the activity of a Cyanobacteria phycocyanin (Cp) in these in vitro models. Materials and Methods: Human skin fibroblasts or human normal keratinocytes were cultured—in the absence or in the presence of Cp and submitted to UVB + UVA and blue light irradiations. Telomeres’ length, progerin expression and mTOR1 activity were then assessed by molecular biology and immuno-enzymatic methods. Results: In cultured fibroblasts exposed to irradiations and treated by Cp, telomeres’ shortage and progerin expression were lower compared to irradiated untreated cells. In cultured keratinocytes treated by Cp and exposed to irradiations, the mTOR activity was lower compared to irradiated untreated cells. Conclusions: In these in vitro studies on human skin fibroblasts and on normal human keratinocytes, the cyanobacteria phycocyanin (Cp) showed a decrease of damages induced by UV and blue light expressed by telomeres preservation and downregulation of progerin expression and of mTOR activity, thus showing skin anti-aging and photo-protective potential.展开更多
文摘Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).
文摘Objective: Detecting the expression and mutation of human telomeric repeat binding factor (hTRF1) in 10 malignant hematopoietic cell line cells on the base of determining its genomic structure and its four pseudogenes to clarify ifhTRF1 mutation is one of the factors of the activation of telomerase. Methods: hTRFlcDNA sequences were obtained from GenBank, its genome structure and pseudogenes were forecasted by BLAST and other biology information programs and then testified by sequencing. Real-time RT-PCR was used to detect the expression of h TRFlmRNA in 10 cell line cells, including myelogenous leukemia cell lines K562, HL-60, U-937, NB4, THP-I, HEL and Dami; lymphoblastic leukemia cell lines 6T-CEM, Jurkat and Raji. Telomerase activities of cells were detected by using telomeric repeat amplification (TRAP)-ELISA protocol. PCR and sequencing were used to detect mutation of each exon ofhTRF1 in 10 cell line cells. Results: hTRF1 gene, mapped to 8q13, was divided into 10 exons and spans 38.6 kb. Four processed pseudogenes ofhTRF1 located on chromosome 13, 18, 21 and X respectively, was named as ψhTRFI-13, ψhTRFI-18, ψhTRF1-21 and ψhTRFI-X respectively. All cell line cells showed positive telomerase activity. The expression of hTRF1 was significantly lower in malignant hematopoietic cell lines cells (0.0338, 0.0108-0.0749) than in normal mononuclear cells (0.0493, 0.0369-0.128) (P=0.004). But no significant mutation was found in all exons of hTRF1 in 10 cell line cells. Four variants were found in part ofintron 1, 2 and 8 ofhTRF1. Their infection on gene function is unknown and needs further studies. Conclusion: hTRF1 mutation is probably not one of the main factors for telomerase activation in malignant hematopoietic disease.
文摘<strong>Background:</strong> Dexpanthenol containing formula (BEPANTHEN<sup>®</sup>), formulated as a water in oil preparation, is currently widely marketed as a diaper care product aiming to protect baby’s buttocks and repair diaper dermatitis. Dexpanthenol is a well-known moisturizer with barrier-improving properties and the oily phase of the water in oil preparation forms a lipophilic film on the skin surface that isolates the skin from irritants (feces and urine). Prolonged contact with irritants triggers a local inflammation cascade responsible for the cutaneous erythema. To further investigate the protective properties of skin barrier preparations, we took advantage of an <i>ex vivo</i> model of healthy human skin discs especially designed to evaluate protective and/or repairing effects of topical preparations recommended for baby’s buttocks through the measurement of interleukin-1 alpha release (a cytokine considered as the <em>Primum movens</em> of the skin inflammatory reaction), following the application of different irritants. <strong>Methods: </strong>Healthy human skin discs have been incubated in the absence (control) or in the presence of two irritants,<em> i.e.</em> a “urine like + urease” preparation and sodium dodecyl sulfate, and in the presence of three ointments, one containing dexpanthenol, but not the other two. At the end of the incubation period, interleukin-1 alpha (IL-1<em>α</em>) was quantified in the explants culture media.<strong> Results: </strong>“Urine like + urease” preparation (ULU) and sodium dodecyl sulfate (SDS) both increased IL-1<em>α</em> production of skin explants by 181.1% (p < 0.001) and 88.3% (p < 0.001), respectively. The dexpanthenol containing formula significantly inhibited the ULU- and the SDS-induced IL-1<em>α</em> release by 67.42% (p < 0.001) and 46.55% (p < 0.001), respectively. Under the same experimental conditions, one of the formulas without dexpanthenol significantly inhibited the ULU-induced IL-1<em>α</em> release by 45.94% (p < 0.01) but not the SDS-induced one, and the other tested formulation displayed no significant effect on the IL-1<em>α</em> production regardless of the irritant applied. Moreover, the effect of the dexpanthenol containing formula on the ULU-induced IL-1<em>α</em> release was significantly higher than the effect of the other formula;a difference of 19.6 % (p < 0.05) was observed.<strong> Conclusion: </strong>Dexpanthenol containing formula (BEPANTHEN<sup>®</sup>) provides good protection of baby’s buttocks against irritants. Its protective effect seems to be superior compared with other products, which did not contain this ingredient. Moreover, the results obtained in the present study suggest that dexpanthenol displays <i>per se</i> a real IL-1<em>α</em> production inhibitory effect. This work, however, consists of preliminary studies and additional investigations involving more formulas and end-points such as the quantification of other pro- or anti-inflammatory cytokines and/or resolvins for example, are needed to better understand the cutaneous protective effect of dexpanthenol.
文摘Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity of mTOR are increased. At our knowledge, there is no published data on Cps correlated with ultraviolet radiation (UV) and blue light effects in human cells regarding telomeres’ length, progerin expression or mTOR1 complex activity. Objectives: In this study, we sought to assess 1) telomeres’ length in newborn human fibroblasts exposed to UV and blue light;2) progerin production in mature human normal fibroblasts exposed to UV;3) mTOR1 activation in adult human normal keratinocytes exposed to UV, analyzing the activity of a Cyanobacteria phycocyanin (Cp) in these in vitro models. Materials and Methods: Human skin fibroblasts or human normal keratinocytes were cultured—in the absence or in the presence of Cp and submitted to UVB + UVA and blue light irradiations. Telomeres’ length, progerin expression and mTOR1 activity were then assessed by molecular biology and immuno-enzymatic methods. Results: In cultured fibroblasts exposed to irradiations and treated by Cp, telomeres’ shortage and progerin expression were lower compared to irradiated untreated cells. In cultured keratinocytes treated by Cp and exposed to irradiations, the mTOR activity was lower compared to irradiated untreated cells. Conclusions: In these in vitro studies on human skin fibroblasts and on normal human keratinocytes, the cyanobacteria phycocyanin (Cp) showed a decrease of damages induced by UV and blue light expressed by telomeres preservation and downregulation of progerin expression and of mTOR activity, thus showing skin anti-aging and photo-protective potential.