The aim of this study was to investigate the knockdown efficiency of 2'-O-methylated (2'-OMe)-modified small interfering RNAs (siRNAs) on human rhinovirus 1B (HRV1B) replication and the interferon response. Th...The aim of this study was to investigate the knockdown efficiency of 2'-O-methylated (2'-OMe)-modified small interfering RNAs (siRNAs) on human rhinovirus 1B (HRV1B) replication and the interferon response. Thus, 24 2'-OMe-modified siRNAs were designed to target HRV1B. The RNA levels of HRV1B, Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-I, and interferons were determined in HRV1B-infected HeLa and BEAS-2B epithelial cells transfected with 2'-OMe-modified siRNAs. The results revealed that all 2'-OMe-modified siRNAs interfered with the replication of HRVIB in a cell-specific and transfection efficiency-dependent manner. Viral activation of Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-1, and the interferon response was detected. In conclusion, the 2'-OMe-modified siRNAs used in this study could interfere with HRV1B replication, possibly leading to the reactivation of the interferon response.展开更多
The activation of the stimulating factor of the interferon gene(STING)pathway can enhance the immune response within the tumor.Cyclic diguanylate monophosphate(c-di-GMP)is a negatively charged,hydrophilic STING agonis...The activation of the stimulating factor of the interferon gene(STING)pathway can enhance the immune response within the tumor.Cyclic diguanylate monophosphate(c-di-GMP)is a negatively charged,hydrophilic STING agonist,however,its effectiveness is limited due to the poor membrane permeability and low bioavailability.Herein,we introduced KL-7 peptide derived from Aβamyloid fibrils that can self-assemble to form nanotubes to load and deliver c-di-GMP,which significantly enhanced c-di-GMP’s effectiveness and then exhibited a robust“in situ immunity”to kill melanoma cells.KL-7 peptide nanotube,also called PNT,was loaded with negatively charged c-di-GMP via electrostatic interaction,which prepared a nanocomposite named c-di-GMP-PNT.Treatment of RAW 264.7 cells(leukemia cells in mouse macrophage)with c-di-GMP-PNT markedly stimulated the secretion of IL-6 and INF-βalong with phospho-STING(Ser365)protein expression,indicating the activation of the STING pathway.In the unilateral flank B16-F10(murine melanoma cells)tumor-bearing mouse model,compared to PNT and cdi-GMP,c-di-GMP-PNT can promote the expression of INF-β,TNF-α,IL-6,and IL-1β.At the same time,up-regulated CD4 and CD8 active T cells kill tumors and enhance the immune response in tumor tissues,resulting in significant inhibition of tumor growth in tumor-bearing mice.More importantly,in a bilateral flank B16-F10 tumor model,both primary and distant tumor growth can also be significantly inhibited by c-di-GMP-PNT.Moreover,c-di-GMP-PNT demonstrated no obvious biological toxicity on the main organs(heart,liver,spleen,lung,and kidney)and biochemical indexes of mice.In summary,our study provides a strategy to overcome the barriers of free c-di-GMP in the tumor microenvironment and c-di-GMP-PNT may be an attractive nanomaterial for anti-tumor immunity.展开更多
文摘The aim of this study was to investigate the knockdown efficiency of 2'-O-methylated (2'-OMe)-modified small interfering RNAs (siRNAs) on human rhinovirus 1B (HRV1B) replication and the interferon response. Thus, 24 2'-OMe-modified siRNAs were designed to target HRV1B. The RNA levels of HRV1B, Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-I, and interferons were determined in HRV1B-infected HeLa and BEAS-2B epithelial cells transfected with 2'-OMe-modified siRNAs. The results revealed that all 2'-OMe-modified siRNAs interfered with the replication of HRVIB in a cell-specific and transfection efficiency-dependent manner. Viral activation of Toll-like receptor 3, melanoma differentiation-associated gene 5, retinoic acid inducible gene-1, and the interferon response was detected. In conclusion, the 2'-OMe-modified siRNAs used in this study could interfere with HRV1B replication, possibly leading to the reactivation of the interferon response.
基金supported by the National Natural Science Foundation of China(Nos.21877036 and 32201044)the Key Project of Developmental Biology and Breeding from Hunan Province(No.2022XKQ0205)+1 种基金the Hunan Natural Science Foundation(No.2021JJ40335)the Science and Technology Planning Project of Hunan Province(No.2018TP1017).
文摘The activation of the stimulating factor of the interferon gene(STING)pathway can enhance the immune response within the tumor.Cyclic diguanylate monophosphate(c-di-GMP)is a negatively charged,hydrophilic STING agonist,however,its effectiveness is limited due to the poor membrane permeability and low bioavailability.Herein,we introduced KL-7 peptide derived from Aβamyloid fibrils that can self-assemble to form nanotubes to load and deliver c-di-GMP,which significantly enhanced c-di-GMP’s effectiveness and then exhibited a robust“in situ immunity”to kill melanoma cells.KL-7 peptide nanotube,also called PNT,was loaded with negatively charged c-di-GMP via electrostatic interaction,which prepared a nanocomposite named c-di-GMP-PNT.Treatment of RAW 264.7 cells(leukemia cells in mouse macrophage)with c-di-GMP-PNT markedly stimulated the secretion of IL-6 and INF-βalong with phospho-STING(Ser365)protein expression,indicating the activation of the STING pathway.In the unilateral flank B16-F10(murine melanoma cells)tumor-bearing mouse model,compared to PNT and cdi-GMP,c-di-GMP-PNT can promote the expression of INF-β,TNF-α,IL-6,and IL-1β.At the same time,up-regulated CD4 and CD8 active T cells kill tumors and enhance the immune response in tumor tissues,resulting in significant inhibition of tumor growth in tumor-bearing mice.More importantly,in a bilateral flank B16-F10 tumor model,both primary and distant tumor growth can also be significantly inhibited by c-di-GMP-PNT.Moreover,c-di-GMP-PNT demonstrated no obvious biological toxicity on the main organs(heart,liver,spleen,lung,and kidney)and biochemical indexes of mice.In summary,our study provides a strategy to overcome the barriers of free c-di-GMP in the tumor microenvironment and c-di-GMP-PNT may be an attractive nanomaterial for anti-tumor immunity.