期刊文献+
共找到1,980篇文章
< 1 2 99 >
每页显示 20 50 100
Green Control Measures of Weeds in Wheat Fields in Hetao Irrigation Area along the Yellow River
1
作者 Lei YANG Jing LIU +8 位作者 Ruiqiang WEN Peizhi ZHANG Chang LIU Aiqing WEN Jiancheng ZHANG Chunzhi ZHAO Huijuan ZHANG Hongxu ZHANG Guoqiang LI 《Agricultural Biotechnology》 CAS 2021年第6期29-34,共6页
This study was conducted to solve the problem of green weed control in wheat fields in Hetao irrigation area among the Yellow River.Based on the observation of the competition between wheat and weeds in areas where we... This study was conducted to solve the problem of green weed control in wheat fields in Hetao irrigation area among the Yellow River.Based on the observation of the competition between wheat and weeds in areas where weeds occurred seriously in wheat fields in Hetao irrigation area among the Yellow River,we measured the effects of green weed control measures and wheat yield using different wheat varieties,planting densities,different organic fertilizers,different ploughing times,and different mulching methods.The results showed that the emergence of weeds in wheat fields dominated by Chenopodiaceae weeds,grain amaranth and barnyard grass was more than 10 d later than wheat.Weeds were mainly distributed between rows(holes),and the number of plants accounted for 66.6%(drill seeding)and 97.6%(hole seeding),respectively.And the growth of weeds in rows(holes)was weaker,and the fresh weight of individual plants was 39.3%-41.9%lower than that between rows(holes).The ecological weed inhibitory effect was significant in the early stage of wheat growth;and among the green weed control measures,except that different varieties and planting densities caused no significant difference in weed control effect,other measures had obvious weed control effects.Comprehensive comparison showed that the control effects of plant number in black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 82.3%,71.7%,22.0%,and 8.6%,respectively;the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding,increasing ploughing times,and applying organic fertilizer free of weed seed pollution were 98.0%,97.1%,23.9%,and 9.6%,respectively;and the fresh weight control effects of black film full-covered hole seeding,conventional film-covered hole seeding and increasing ploughing times increased wheat yield by 69.4%,56.4%and 21.1%,respectively.The technologies in this study can realize the purposes of mechanized green weed control in organic wheat production and low-cost,high-yield,large-scale production. 展开更多
关键词 Hetao irrigation area along the yellow river Wheat weed Green control Organic wheat Film mulching hole seeding
下载PDF
Improvement Design of Waterfront Landscape—With the Yellow River Scenic Area in Zhengzhou City as a Study Case
2
作者 任君 《Journal of Landscape Research》 2010年第10期72-75,共4页
From the perspective of "human", this study focuses on the feeling of people in a certain region about the waterfront environment, by combining with theories in landscape architecture, environmental psycholo... From the perspective of "human", this study focuses on the feeling of people in a certain region about the waterfront environment, by combining with theories in landscape architecture, environmental psychology and other interdisciplines, in view of present situation of waterfront landscapes in the Yellow River Scenic Area of Zhengzhou City, tries to find new approaches for waterfront landscape design and development based on landscape design principles and exploration of the human's nature of loving water and the interaction between tourists and waterfront landscapes. 展开更多
关键词 the yellow river SCENIC area WATERFRONT landscape IMPROVEMENT DESIGN Water LOVING
下载PDF
Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau,China 被引量:16
3
作者 MA Qiang JIN Hui-Jun +4 位作者 Victor F.BENSE LUO Dong-Liang Sergey S.MARCHENKO Stuart A.HARRIS LAN Yong-Chao 《Advances in Climate Change Research》 SCIE CSCD 2019年第4期225-239,共15页
Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the T... Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the Tanag hydrological station)on the northeastern Qinghai-Tibet Plateau,West China.How and to what extent does the degrading permafrost change the flow in the SAYR?According to seasonal regimes of hydrological processes,the SAYR is divided intofour sub-basins with varied permafrost extents to detect impacts of permafrost degradation on the Yellow River streamflow.Results show that permafrost degradation may have released appreciable meltwater for recharging groundwater.The potential release rate of ground-ice melt-water in the Sub-basin 1(the headwater area of the Yellow River(HAYR),above the Huangheyan hydrological station)is the highest(5.6 mm per year),contributing to 14.4%of the annual Yellow River streamflow at Huangheyan.Seasonal/intra-and annual shifts of streamflow,a possible signal for the marked alteration of hydrological processes by permafrost degradation,is observed in the HAYR,but the shifts are minor in other sub-basins in the SAYR.Improved hydraulic connectivity is expected to occur during and after certain degrees of permafrost degradation.Direct impacts of permafrost degradation on the annual Yellow River streamflow in the SAYR at Tanag,i.e.,from the meltwater of ground-ice,is estimated at 4.9%that of the annual Yellow River discharge at Tanag,yet with a high uncertainty,due to neglecting of the improved hydraulic connections from permafrost degradation and the flow generation conditions for the ground-ice meltwater.Enhanced evapotranspiration,substantial weakening of the Southwest China Autumn Rain,and anthropogenic disturbances may largely account for the declined streamflow in the SAYR. 展开更多
关键词 Streamflow Warming climate Permafrost degradation Streamflow patterns Source area of yellow river(SAYR)
下载PDF
Diversity analysis of soil dematiaceous hyphomycetes from the Yellow River source area:Ⅰ 被引量:5
4
作者 Hao-qin PAN Jin-feng YU Yue-ming WU Tian-yu ZHANG Hong-feng WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第10期829-834,共6页
Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then t... Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then the co-relationship between genus species of soil dematiaceous hyphomycetes and ecosystem-types was analyzed. The results show that the amount and species distribution of soil dematiaceous hyphomycetes had an obvious variability in different ecosystem-types, and that the dominant genus species varied in the eight ecosystem-types studied, with Cladosporium being the dominant genus in seven of the eight ecosystem-types except wetland. The index of species diversity varied in different ecosystem-types. The niche breadth analysis showed that Cladosporium had the highest niche breadth and distributed in all ecosystem-types, while the genera with a narrow niche breadth distributed only in a few ecosystem-types. The results of niche overlap index analysis indicated that Stachybotrys and Torula, Doratomyces and Scolecobasidium, Cladosporium and Chrysosporium had a higher niche overlap, whereas Arthrinium and Gliomastix, Phialophora and Doratomyces, Oidiodendron and Ulocladium had no niche overlap. 展开更多
关键词 yellow river source area ECOSYSTEMS Fungal species diversity Soil dematiaceous hyphomycetes Niche breadth Niche overlap
下载PDF
Ice-wedge Pseudomorphs Showing Climatic Change Since the Late Pleistocene in the Source Area of the Yellow River, Northeast Tibet 被引量:3
5
作者 CHENG Jie ZHANG Xujiao +4 位作者 TIAN Mingzhong YU Wenyang YU Jiangkuan TANG Dexiang YUE Jianwei 《Journal of Mountain Science》 SCIE CSCD 2005年第3期193-201,共9页
The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are r... The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed. 展开更多
关键词 Ice-wedge pseudomorph PALEOCLIMATE Last Glacial Age MEGAtheRMAL the source area of the yellow river Tibetan Plateau
下载PDF
Study of the Optimization and Adjustment ofthe IndustrialStructure Subjected to Water Resource in the Drainage Area of the Yellow River 被引量:1
6
作者 Wang Haiying, Fan Zhenjun, Hou Xiaoli, Dong SuochengInstitute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China 《Chinese Journal of Population,Resources and Environment》 2004年第1期48-53,共6页
Since the 1990s, the Yellow River stream has been temporarily interrupted for several years, which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, a... Since the 1990s, the Yellow River stream has been temporarily interrupted for several years, which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, and especially causes great harm to regions on the lower reaches. Based on the analysis of the relationship between the development of society and economy and water scarcity, the author thinks it is necessary to optimize and adjust the industrial structure that has extravagantly consumed enormous amounts of water, and to develop ecological agriculture, industry and tourism which are balanced with the ecological environment. Finally, the author puts forward several pieces of advice and countermeasures about how to build the economic systems by which water can be used economically. 展开更多
关键词 drainage areas of the yellow river water scarcity industrial structure optimize and adjust
下载PDF
An evaluation of soil moisture from AMSR-E over source area of the Yellow River, China 被引量:1
7
作者 TangTang Zhang Mekonnen Gebremichael +3 位作者 Akash Koppa XianHong Meng Qun Du Jun Wen 《Research in Cold and Arid Regions》 CSCD 2019年第6期461-469,共9页
In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration A... In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September. 展开更多
关键词 AMSR-E soil moisture products soil moisture ground measurements source area of the yellow river AMSR-E soil moisture products applicability
下载PDF
Large-scale characteristics of thermokarst lakes across the source area of the Yellow River on the Qinghai-Tibetan Plateau 被引量:1
8
作者 LIU Wen-hui ZHOU Guang-hao +5 位作者 LIU Hai-rui LI Qing-peng XIE Chang-wei LI Qing ZHAO Jian-yun ZHANG Qi 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1589-1604,共16页
As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),pe... As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),permafrost degradation has accelerated since the 1980s,and numerous thermokarst lakes have been discovered.In this paper,we use Sentinel-2 images to extract thermokarst lake boundaries and perform a regional-scale study on their geometry across the permafrost region in the SAYR.We also explored the spatiotemporal variations and potential drivers from the perspectives of the permafrost,climate,terrain and vegetation conditions.The results showed that there were 47,518 thermokarst lakes in 2021 with a total area of 190.22×106 m^(2),with an average size of 4,003.3 m^(2).The 44,928 ponds(≤10,000 m^(2))predominated the whole lake number(94.1%)but contributed to a small portion of the total lake area(28.8%).With 2,590 features(5.9%),small-sized(10,000 to 100,000 m^(2))and large-sized lakes(>100,000 m^(2))constituted up to 71.2%of the total lake area.Thermokarst lakes developed more significantly in warm permafrost regions than in cold permafrost areas;74.1%of lakes with a total area of 119.6×106 m^(2)(62.9%),were distributed in warm permafrost regions.Most thermokarst lakes were likely to develop within the elevation range of 4,500~4,800 m,on flat terrain(slope<10°),on SE and S aspects and in alpine meadow areas.The thermokarst lakes in the study region experienced significant shrinkage between 1990 and 2021,characterized by obvious lake drainage;the lake numbers decreased by 5418(56.1%),with a decreasing area of 58.63×106 m^(2)(49.0%).This shrinkage of the thermokarst lake area was attributable mainly to the intensified degradation of rich-ice permafrost thawing arising from continued climate warming,despite the wetting climatic trend. 展开更多
关键词 thermokarst lake Spatial characteristic Influencing factor Source area of the yellow river
下载PDF
Prediction of Maize Yield and Its Component Factors in Yellow River Irrigation Area of Ningxia under Climate Change 被引量:1
9
作者 刘玉兰 任玉 +1 位作者 王迎春 郭晓雷 《Agricultural Science & Technology》 CAS 2011年第5期699-701,736,共4页
[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,pre... [Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,precipitation and radiation in 25 km × 25 km grid in Ningxia from 2010 to 2100 obtained by regional climate model,maize yield in Yellow River irrigation area of Ningxia in the 21st century was studied by means of corrected CERES-Maize model.[Result] With climate warming,maize yield in Yellow River irrigation area of Ningxia in 2020s and 2050s showed increase trend compared with base years(average in 1961-1990)when current adaptive maize variety and optimum production management measures were adopted,while maize yield went down in 2080s with the further increase of temperature.The grain number per spike and spike grain weight as the yield components of maize also showed the same trend with maize yield.In 2020s and 2050s,the increase of maize yield under B2 scenario was higher than that under A2 scenario,while the decrease of maize yield under B2 scenario was lower than that under A2 scenario in 2080s.[Conclusion] With the increase of temperature,maize yield in Yellow River irrigation area of Ningxia went up firstly and then went down. 展开更多
关键词 yellow river irrigation area of Ningxia Climate change MAIZE
下载PDF
THE RATIONAL UTILIZATION OF WATER RESOURCES IN IRRIGATED AREA OF THE YELLOW RIVER IN NINGXIA
10
作者 Liu Baizhang Fang Wanjun Working Office of First Phase Daliushu Project, Department of Water Conservancy of Ningxia,China Division of Management of Tanglai Canal, Department of Water Conservancy of Ningxia, China 《干旱区资源与环境》 CSCD 1993年第Z1期192-196,共5页
The paper describes the water resources in the irrigated area of Ningxia, China, andthe methods for improving the utilization of the water resources, and puts forward somesuggestions so as to utilize the water resourc... The paper describes the water resources in the irrigated area of Ningxia, China, andthe methods for improving the utilization of the water resources, and puts forward somesuggestions so as to utilize the water resources rationally. The history of irrigation farming in Ningxia can be traced back to more than two thou- 展开更多
关键词 Ningxia IRRIGATED area by yellow river Water RESOURCES Ecologic ENVIRONMENT
下载PDF
Engineering Geological Study of Regional Tectonic Stability in the Area of the Longyang Gorge Power Station on the Huanghe (Yellow) River
11
作者 Wang Shitian, Li Yusheng, Su Daogang and Wei Lunwu Chengdu College of Geology, Chengdu, Sichuan Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1989年第2期197-209,共13页
In the stability study of the regional structures in the area of the Longyang Gorge Hydroelectrical Power Station, a model of the current stress-deformation field of the area was constructed based on analyses of avail... In the stability study of the regional structures in the area of the Longyang Gorge Hydroelectrical Power Station, a model of the current stress-deformation field of the area was constructed based on analyses of available data of regional surveys and historical earthquakes and field investigations of active faults and ancient earthquakes. This model was examined and verified by physical and mathematical simulation experiments, and quantitative relations and data were obtained. 展开更多
关键词 river area Engineering Geological Study of Regional Tectonic Stability in the area of the Longyang Gorge Power Station on the Huanghe yellow
下载PDF
Impact of vegetation restoration on hydrological processes in the middle reaches of the Yellow River,China 被引量:4
12
作者 XIN Zhong-bao YU Xin-xiao 《Forestry Studies in China》 CAS 2009年第4期209-218,共10页
Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-... Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-2007 period have been investigated using GIMMS and SPOT VGT NDVI data. We have also analyzed the interannual variations in vegetation cover and changes in annual runoff and sediment discharge, the consequences from precipitation change and the Grain for Green Project (GGP). The results show that vegetation cover of the Helong area has increased during the 1981-2007 period. The northwestern part the Helong area, where the flat sandy lands are covered by grass, has experienced the largest increase. The region where the vegetation cover has declined is largely found in the southern and southeastern Helong area, which is a gullied hilly area or forested. Although precipitation was relatively low during the 1999-2007 period, the vegetation cover showed a significant increase in the Helong area, due to the implementation of the GGP. During this period, the most significant improvement in the vegetation cover occurred mainly in the gullied hilly areas of the Loess Plateau, such as the drainage basins of the Kuyehe and Tuweihe rivers and the middle and lower reaches of the Wudinghe and Yanhe rivers. A comparison of the average annual maximum NDVI between the earlier (1998-2002) stage and the next five years (2003-2007) of the GGP indicates that the areas with increases of 10% and 20% in NDVI account for 72.5% and 36.4% of the total area, respectively. Interannual variation of annual runoff and sediment discharge shows a declining trend, especially since the 1980s, when the decrease became very obvious. Compared with the 1950-1969 period, the average runoff during the 1980-2007 period was reduced by 34.8 × 10^8 m3 and the sediment discharge by 6.4 ×10^8 t, accounting for 49.4% and 64.9% of that in the 1950-1969 period, respectively. There is a positive correlation between the annual maximum NDVI and annual runoff and sediment discharge. This correlation was reversed since the implementation of the GGP in 1999 and vegetation cover in the He- long area has increased, associated with the decrease in runoff and sediment discharge. Less precipitation has been an important fac- tor driving the decrease in runoff and sediment discharge during 1999 2007. However, restoration and improvement of the vegetation cover may also have played a significant role in accelerating the decrease in annual runoff and sediment discharge by enhancing evapotranspiration and alleviating soil erosion. 展开更多
关键词 middle reaches of the yellow river Hekouzhen to Longmen area (Helong area vegetation restoration Grain forGreen Project (GGP) runoff and sediment
下载PDF
Changes in sediment discharge in a sediment-rich region of the Yellow River from 1955 to 2010: implications for further soil erosion control 被引量:7
13
作者 JuYing JIAO ZhiJie WANG +2 位作者 GuangJu ZHAO WanZhong WANG XingMin MU 《Journal of Arid Land》 SCIE CSCD 2014年第5期540-549,共10页
The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield bas... The well-documented decrease in the discharge of sediment into the Yellow River has attracted considerable attention in recent years. The present study analyzed the spatial and temporal variation of sediment yield based on data from 46 hydrological stations in the sediment-rich region of the Yellow River from 1955 to 2010. The results showed that since 1970 sediment yield in the region has clearly decreased at different rates in the 45 sub-areas controlled by hydrological stations. The decrease in sediment yield was closely related to the intensity and extent of soil erosion control measures and rainstorms that occurred in different periods and sub-areas. The average sediment delivery modulus(SDM) in the study area decreased from 7,767.4 t/(km^2·a) in 1951–1969 to 980.5 t/(km^2·a) in 2000–2010. Our study suggested that 65.5% of the study area with the SDM below 1,000 t/(km^2·a) is still necessary to control soil deterioration caused by erosion, and soil erosion control measures should be further strengthened in the areas with the SDM above 1,000 t/(km^2·a). 展开更多
关键词 sediment delivery modulus(SDM) yellow river hydrological station(s)-controlled sub-area soil and water conservation
下载PDF
Modelling Irrigation and Salinity Management Strategies in the Ord Irrigation Area 被引量:1
14
作者 Riasat Ali John Byrne Tara Slaven 《Natural Resources》 2010年第1期34-56,共23页
The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuou... The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irrigation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watertable area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will have high salinity risks without any drainage management. 展开更多
关键词 irrigation MODELLING SALINITY MODELLING SALINE SHALLOW Watertable irrigation Management Ord river irrigation area
下载PDF
A STUDY ON THE WATER RESOURCES AND SEDIMENT PROBLEMS IN THE IRRIGATED AREA OF NORTHWEST SHANDONG PROVINCE
15
作者 Tang Dengyin Zhang Shifeng Institute of Geography, CAS, Beijing 100101 People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第2期91-96,共6页
There are very serious water and sediment problems in the irrigated areas of northwest Shandong Province. In upper reaches of the irrigated area, the Yellow River water are widely used for farmland watering while leav... There are very serious water and sediment problems in the irrigated areas of northwest Shandong Province. In upper reaches of the irrigated area, the Yellow River water are widely used for farmland watering while leaving the ground water unusedion. But in the lower reaches, there is not enough surface water to be channeled for irrigation, so the ground water has always been over extracted, in some parts of the lower reaches, the descending water table caused the formation of funnel. Siltation in canals are very difficult to be cleared up, the drop of agriculture yield in the sandy land close to the channel head and along the main channels impair the living conditions of the local people. The conflicts between the excessive dependence on the Yellow River and the decreasing tendancy of water amount provided by the Yellow Ricer forces the local government to find new ways to solve the water resource problems. The answer could be: Using new technique for the irrigated system, pay more attention to the ground water development, and the construction and maintenance of wells. 展开更多
关键词 water and sediment irrigation diversion yellow river northwest of Shandong.
下载PDF
Effects of muddy water irrigation with different sediment gradations on nitrogen transformation in agricultural soil of Yellow River Basin
16
作者 Li-na Chen Zi-long Zhao +4 位作者 Guo-mian Guo Jiang Li Wen-bo Wu Fang-xiu Zhang Xiang Zhang 《Water Science and Engineering》 EI CAS CSCD 2022年第3期228-236,共9页
Muddy water irrigation has been widely practiced in the Yellow River Basin for agricultural production and is an important method of economical and intensive utilization of water resources.In this study,the effects of... Muddy water irrigation has been widely practiced in the Yellow River Basin for agricultural production and is an important method of economical and intensive utilization of water resources.In this study,the effects of sediment gradation,sand content,and soil moisture content on nitrogen(N)transformation were studied through a series of experimental tests.The results indicated that muddy water irrigation significantly affected agricultural soil physical and biological properties as well as N transformation.Soil bulk density,total porosity,pH,and microbial enzyme activities significantly correlated with N transformation as affected by the interaction between sediment and soil moisture.Sediment addition generally increased the soil bulk density and reduced the soil porosity and pH significantly,and the optimum moisture for promotion of the N transformation rate was 80%of the water-filled pore space.Therefore,muddy water irrigation has a potentially long-term influence on agricultural N cycles in semi-arid regions of northwestern China.This could provide a theoretical basis for scientific and rational use of muddy water for irrigation. 展开更多
关键词 yellow river Basin Muddy water irrigation Soil properties Nitrogen transformation SEDIMENT
下载PDF
Geostatistical analysis of variations in soil salinity in a typical irrigation area in Xinjiang, northwest China 被引量:1
17
作者 Mamattursun Eziz Mihrigul Anwar XinGuo Li 《Research in Cold and Arid Regions》 CSCD 2016年第2期147-155,共9页
Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spa... Characterizing spatial and temporal variability of soil salinity is tremendously important for a variety of agronomic and environmental concerns in arid irrigation areas. This paper reviews the characteristics and spatial and temporal variations of soil salinization in the Ili River Irrigation Area by applying a geostatistical approach. Results showed that: (1) the soil salinity varied widely, with maximum value of 28.10 g/kg and minimum value of 0.10 g/kg, and was distributed mainly at the surface soil layer. Anions were mainly SO42- and Cl-, while cations were mainly Na+ and Ca2+; (2) the abundance of salinity of the root zone soil layer for different land use types was in the following order: grassland > cropland > forestland. The abundance of salinity of root zone soil layers for different periods was in the following order: March > June > September; (3) the spherical model was the most suitable variogram model to describe the salinity of the 0-3 cm and 3-20 cm soil layers in March and June, and the 3-20 cm soil layer in September, while the exponential model was the most suitable variogram model to describe the salinity of the 0-3 cm soil layer in September. Relatively strong spatial and temporal structure existed for soil salinity due to lower nugget effects; and (4) the maps of kriged soil salinity showed that higher soil salinity was distributed in the central parts of the study area and lower soil salinity was distributed in the marginal parts. Soil salinity tended to increase from the marginal parts to the central parts across the study area. Applying the kriging method is very helpful in detecting the problematic areas and is a good tool for soil resources management. Managing efforts on the appropriate use of soil and water resources in such areas is very important for sustainable agriculture, and more attention should be paid to these areas to prevent future problems. 展开更多
关键词 soil salinization VARIATION GEOSTATISTICS Ili river irrigation area
下载PDF
Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts 被引量:13
18
作者 TIAN Hui LAN Yongchao +4 位作者 WEN Jun JIN Huijun WANG Chenghai WANG Xin KANG Yue 《Journal of Geographical Sciences》 SCIE CSCD 2015年第6期643-668,共26页
Climate change investigation at a watershed-scale plays a significant role in re- vealing the historical evolution and future trend of the runoff variation in watershed. This study examines the multisource hydrologica... Climate change investigation at a watershed-scale plays a significant role in re- vealing the historical evolution and future trend of the runoff variation in watershed. This study examines the multisource hydrological and meteorological variables over the source area of the Yellow River (SAYR) from 1961 to 2,012 and the future climate scenarios in the region during 2006-2100 based on the CMIP5 projection data. It recognizes the significant charac-teristics of the recent climate change in the SAYR and predicts the change trend of future flow in the region. It is found that (1) The climate in the SAYR has experienced a significant warm-wet change since the early 2000s, which is very different from the antecedent warm-dry trend since the late 1980s; (2) The warm-wet trend in the northwestern SAYR (the headwater area of the Yellow River (HAYR), is more obvious than that in the whole SAYR; (3) With pre- cipitation increase, the runoff in the region also experienced an increasing process since 2006. The runoff variations in the region are sensitive to the changes of precipitation, PET and maximum air temperature, but not very sensitive to changes in mean and minimum air temperatures; (4) Based on the CMIP5 projection data, the warm-wet climate trend in SAYR are likely to continue until 2049 if considering three different (i.e. RCP2.6, RCP4.5 and RCP8.5) greenhouse gas emission scenarios, and the precipitation in SAYR will not be less than the current level before 2100; however, it is estimated that the recent flow increase in the SAYR is likely to be the decadal change and it will at most continue until the 2020s; (5) The inter-annual variations of the East Asian winter monsoon are found to be closely related to the variations of annual precipitation in the region. Meanwhile, the increased precipitation as well as the increase of potential evapotranspiration (PET) being far less than that of precipitation in the recent period are the main climate causes for the flow increase in the region. 展开更多
关键词 source area of the yellow river (SAYR) climate warming and wetting decadal scale hydrological impacts
原文传递
Variation of alpine lakes from 1986 to 2019 in the Headwater Area of the Yellow River,Tibetan Plateau using Google Earth Engine 被引量:7
19
作者 LUO Dong-Liang JIN Hui-Jun +4 位作者 DU He-Qiang LI Chao MA Qiang DUAN Shui-Qiang LI Guo-Shuai 《Advances in Climate Change Research》 SCIE CSCD 2020年第1期11-21,共11页
To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than... To understand the variations in surface water associated with changes in air temperature,precipitation,and permafrost in the Headwater Area of the Yellow River(HAYR),we studied the dynamics of alpine lakes larger than 0.01 km^2 during 1986-2019 using Google Earth Engine(GEE)platform.The surface areas of water bodies in the HAYR were processed using mass remote sensing images consisting of Landsat TM/ETM-H/OLI,Sentinel-2A,and MODIS based on automatic extraction of water indices under GEE.Besides,the lake ice phenology of the Sister Lakes(the Gyaring Lake and the Ngoring Lake)was derived by threshold segmenting of water/ice area ratio.Results demonstrate that the change of surface areas experienced four stages:decreasing during 1986-2004,increasing during 2004-2012,decreasing again during 2012-2017,and increasing again during 2017-2019.Correspondingly,the number of small lakes decreased(-26.5 per year),increased(139.5 per year),again decreased(-109.0 per year),and again increased(433.0 per year).Eight lakes larger than 1 km^2 disappeared in 2004 but restored afterward.The overall trends in the area of small lakes(0.01-1 km^2),large lakes(>1 km^2),and all lakes during 1986-2019 were 0.4,3.1,and 3.4 km^2 per year,respectively.Although the onsets of freezing,freeze-up,breaking and the break-up of the Sister Lakes varied from year to year,there is no obvious trend regarding the lake ice phenology.Tendencies of lake variations in the HAYR are primarily related to the increased net precipitation and the declined aridity,followed by the construction of hydropower station around the outlet of the Ngoring Lake,as well as permafrost degradation. 展开更多
关键词 Headwater area of the yellow river Lake surface area Lake ice phenology Climate change Google Earth Engine Permafrost degradation
原文传递
Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River:a case study from Lake Ngoring
20
作者 Yang PU Min ZHAN +4 位作者 Xiaohua SHAO Josef PWERNE Philip AMEYERS Jiaojiao YAO Da ZHI 《Frontiers of Earth Science》 SCIE CSCD 2023年第4期920-932,共13页
In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have co... In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s)of these changes.This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause.We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images.The results show that lake surface area changes were generally consistent with variations in precipitation,streamflow and the regional dry-wet index in the SAYR,suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes.These records are also comparable to the stalagmite δ^(18)O monsoon record,as well fluctuations in the Southern Oscillation Index(SOI).Moreover,an association of high TSI(total solar insolation)anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed,implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale.Following this line of reasoning,we compared the δ^(13)C org-based lake level fluctuations of Lake Ngoring for the last millennium,as previously reported,with the hydroclimatic history and the reconstructed TSI record.We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium,which is also dominated by solar activity.In general,it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales,which is clearly manifested in the variations of lake area and water level of Lake Ngoring. 展开更多
关键词 Qinghai-Tibet Plateau(QTP) source area of the yellow river(SAYR) lake area/level Asian summer monsoon(ASM) El Nino-Southern Oscillation(ENSO) total solar insolation(TSI)
原文传递
上一页 1 2 99 下一页 到第
使用帮助 返回顶部