Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are comp...Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.展开更多
A balancing technique for casting or forging parts to be machined is presented in this paper.It allows an optimal part setup to make sure that no shortage of material(undercut)will occur during machining.Particularly ...A balancing technique for casting or forging parts to be machined is presented in this paper.It allows an optimal part setup to make sure that no shortage of material(undercut)will occur during machining.Particularly in the heavy part in- dustry,where the resulting casting size and shape may deviate from expectations,the balancing process discovers whether or not the design model is totally enclosed in the actual part to be machined.The alignment is an iterative process involving nonlinear con- strained optimization,which forces data points to lie outside the nominal model under a specific order of priority.Newton methods for non-linear numerical minimization are rarely applied to this problem because of the high cost of computing.In this paper, Newton methods are applied to the balancing of blank part.The aforesaid algorithm is demonstrated in term of a marine propeller blade,and result shows that The Newton methods are more efficient and accurate than those implemented in past research and have distinct advantages compared to the registration methods widely used today.展开更多
An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors...An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.展开更多
We present an improved method. If we assume that the objective function is twice continuously differentiable and uniformly convex, we discuss global and superlinear convergence of the improved quasi-Newton method.
The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on t...The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well-defined physiological signal which also has a smooth form "hides" inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Firstly, the EEG signals were preprocessed by Quasi-Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors.展开更多
With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an effi...With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.展开更多
ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accur...ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.展开更多
To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method a...To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.展开更多
Numerous intriguing optimization problems arise as a result of the advancement of machine learning.The stochastic first-ordermethod is the predominant choicefor those problems due to its high efficiency.However,the ne...Numerous intriguing optimization problems arise as a result of the advancement of machine learning.The stochastic first-ordermethod is the predominant choicefor those problems due to its high efficiency.However,the negative effects of noisy gradient estimates and high nonlinearity of the loss function result in a slow convergence rate.Second-order algorithms have their typical advantages in dealing with highly nonlinear and ill-conditioning problems.This paper provides a review on recent developments in stochastic variants of quasi-Newton methods,which construct the Hessian approximations using only gradient information.We concentrate on BFGS-based methods in stochastic settings and highlight the algorithmic improvements that enable the algorithm to work in various scenarios.Future research on stochastic quasi-Newton methods should focus on enhancing its applicability,lowering the computational and storage costs,and improving the convergence rate.展开更多
In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other t...In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other than the quadratic programming, which decrease the amount of computations and is also efficient for large scale problem. Under some mild assumptions without the strict complementary condition., the method is globally and superlinearly convergent.展开更多
This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second ...This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like up-dating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.展开更多
An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse probl...An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.展开更多
Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under ...Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under the convexity assumption on objective function, the global convergence of the Broyden's class is proved.展开更多
The convergence of quasi-Newton methods for unconstrained optimization has at-tracted much attention. Powell proved a global convergence result for the BFGS algorithmusing inexact linesearch which satisfies the Wolfe ...The convergence of quasi-Newton methods for unconstrained optimization has at-tracted much attention. Powell proved a global convergence result for the BFGS algorithmusing inexact linesearch which satisfies the Wolfe conditions. Byrd, Nocedal and Yuanextended this result to the convex Broyden class of quasi-Newton methods except the DFPmethod. However, the global convergence of the DFP method, the first quasi-Newtonmethod, using the same linesearch strategy, is still an open question (see ref. [2]).展开更多
An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace def...An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.展开更多
A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system o...A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system of differential equations, that is, to identify the parameter vector q = q(t) appearing in the following system of differential equations, based on the measurement of the state , where is a measurement operator. We give two examples to show the algorithm.展开更多
A quasi-Newton waveform relaxation (WR) algorithm for semi-linear reaction-diffusion equations is presented at first in this paper. Using the idea of energy estimate, a general proof method for convergence of the co...A quasi-Newton waveform relaxation (WR) algorithm for semi-linear reaction-diffusion equations is presented at first in this paper. Using the idea of energy estimate, a general proof method for convergence of the continuous case and the discrete case of quasi-Newton WR is given, which appears to be the superlinear rate. The semi-linear wave equation and semi-linear coupled equations can similarly be solved by quasi-Newton WR algorithm and be proved as convergent with the energy inequalities. Finally several parallel numerical experiments are implemented to confirm the effectiveness of the above theories.展开更多
This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotrop...This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotropic media,where some additional boundary measurements are required.An equivalent formulation to the primary inverse problem is established based on the minimization of a functional cost,where a regularization term is employed to eliminate the oscillations of the noisy data.Moreover,an efficient algorithm is presented and tested for some numerical examples.展开更多
We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced ...We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced by the primaries. We investigate the equilibrium positions of the particle and their parametric variations, as well as the basins of attraction for various numerical methods and various values of the parameter λ.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
基金Supported by the National Natural Science Foundation of China(No.61574099)
文摘Quasi-Newton methods are the most widely used methods to find local maxima and minima of functions in various engineering practices. However, they involve a large amount of matrix and vector operations, which are computationally intensive and require a long processing time. Recently, with the increasing density and arithmetic cores, field programmable gate array(FPGA) has become an attractive alternative to the acceleration of scientific computation. This paper aims to accelerate Davidon-Fletcher-Powell quasi-Newton(DFP-QN) method by proposing a customized and pipelined hardware implementation on FPGAs. Experimental results demonstrate that compared with a software implementation, a speed-up of up to 17 times can be achieved by the proposed hardware implementation.
文摘A balancing technique for casting or forging parts to be machined is presented in this paper.It allows an optimal part setup to make sure that no shortage of material(undercut)will occur during machining.Particularly in the heavy part in- dustry,where the resulting casting size and shape may deviate from expectations,the balancing process discovers whether or not the design model is totally enclosed in the actual part to be machined.The alignment is an iterative process involving nonlinear con- strained optimization,which forces data points to lie outside the nominal model under a specific order of priority.Newton methods for non-linear numerical minimization are rarely applied to this problem because of the high cost of computing.In this paper, Newton methods are applied to the balancing of blank part.The aforesaid algorithm is demonstrated in term of a marine propeller blade,and result shows that The Newton methods are more efficient and accurate than those implemented in past research and have distinct advantages compared to the registration methods widely used today.
基金Project supported by the National Natural Science Foundation of China (No. 10372014).
文摘An optimal motion planning scheme based on the quasi-Newton method is proposed for a rigid spacecraft with two momentum wheels. A cost functional is introduced to incorporate the control energy, the final state errors and the constraints on states. The motion planning for determining control inputs to minimize the cost functional is formulated as a nonlinear optimal control problem. Using the control parametrization, one can transform the infinite dimensional optimal control problem to a finite dimensional one that is solved via the quasi-Newton methods for a feasible trajectory which satisfies the nonholonomic constraint. The optimal motion planning scheme was applied to a rigid spacecraft with two momentum wheels. The simulation results show the effectiveness of the proposed optimal motion planning scheme.
文摘We present an improved method. If we assume that the objective function is twice continuously differentiable and uniformly convex, we discuss global and superlinear convergence of the improved quasi-Newton method.
基金The paper was supported by Jiangsu Education Nature Foundation(06KJD310050,06KJB520022)
文摘The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well-defined physiological signal which also has a smooth form "hides" inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Firstly, the EEG signals were preprocessed by Quasi-Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors.
基金supported by the Major National Science&Technology Projects(2010ZX03006-002-04)the National Natural Science Foundation of China(61072070)+4 种基金the Doctorial Programs Foundation of the Ministry of Education(20110203110011)the"111 Project"(B08038)the Fundamental Research Funds of the Ministry of Education(72124338)the Key Programs for Natural Science Foundation of Shanxi Province(2012JZ8002)the Foundation of State Key Laboratory of Integrated Services Networks(ISN1101002)
文摘With the emergence of location-based applications in various fields, the higher accuracy of positioning is demanded. By utilizing the time differences of arrival (TDOAs) and gain ratios of arrival (GROAs), an efficient algorithm for estimating the position is proposed, which exploits the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method to solve nonlinear equations at the source location under the additive measurement error. Although the accuracy of two-step weighted-least-square (WLS) method based on TDOAs and GROAs is very high, this method has a high computational complexity. While the proposed approach can achieve the same accuracy and bias with the lower computational complexity when the signal-to-noise ratio (SNR) is high, especially it can achieve better accuracy and smaller bias at a lower SNR. The proposed algorithm can be applied to the actual environment due to its real-time property and good robust performance. Simulation results show that with a good initial guess to begin with, the proposed estimator converges to the true solution and achieves the Cramer-Rao lower bound (CRLB) accuracy for both near-field and far-field sources.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1534209,51675446)Independent Subject of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA041901 )the National Natural Science Foundation of China ( No. 50775117 )+1 种基金the National S&T Major Project ( No. 2009XZ04001-025 )the Technology Innovation Fund of AVIC ( No.2009E 13224 )
文摘To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.
基金the National Key R&D Program of China(No.2021YFA1000403)the National Natural Science Foundation of China(Nos.11731013,12101334 and U19B2040)+1 种基金the Natural Science Foundation of Tianjin(No.21JCQNJC00030)the Fundamental Research Funds for the Central Universities。
文摘Numerous intriguing optimization problems arise as a result of the advancement of machine learning.The stochastic first-ordermethod is the predominant choicefor those problems due to its high efficiency.However,the negative effects of noisy gradient estimates and high nonlinearity of the loss function result in a slow convergence rate.Second-order algorithms have their typical advantages in dealing with highly nonlinear and ill-conditioning problems.This paper provides a review on recent developments in stochastic variants of quasi-Newton methods,which construct the Hessian approximations using only gradient information.We concentrate on BFGS-based methods in stochastic settings and highlight the algorithmic improvements that enable the algorithm to work in various scenarios.Future research on stochastic quasi-Newton methods should focus on enhancing its applicability,lowering the computational and storage costs,and improving the convergence rate.
文摘In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other than the quadratic programming, which decrease the amount of computations and is also efficient for large scale problem. Under some mild assumptions without the strict complementary condition., the method is globally and superlinearly convergent.
文摘This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like up-dating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.
基金The project supported by the National Natural Science Foundation of China(10272011)
文摘An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated. The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.
基金Partly supported by the National Natural Sciences Foundation of China (No. 19731001)National 973 Information Technology and High-Performance Software Program of China (No.G1998030401)K.C.Wong Education Foundation, Hong Kong.
文摘Abstract In this paper, the Broyden class of quasi-Newton methods for unconstrained optimization is investigated. Non-monotone linesearch procedure is introduced, which is combined with the Broyden's class. Under the convexity assumption on objective function, the global convergence of the Broyden's class is proved.
文摘The convergence of quasi-Newton methods for unconstrained optimization has at-tracted much attention. Powell proved a global convergence result for the BFGS algorithmusing inexact linesearch which satisfies the Wolfe conditions. Byrd, Nocedal and Yuanextended this result to the convex Broyden class of quasi-Newton methods except the DFPmethod. However, the global convergence of the DFP method, the first quasi-Newtonmethod, using the same linesearch strategy, is still an open question (see ref. [2]).
基金Supported by The Natural Science Fundations of China and Jiangsu
文摘An algorithm for solving nonlinear least squares problems with general linear inequality constraints is described.At each step,the problem is reduced to an unconstrained linear least squares problem in a subs pace defined by the active constraints,which is solved using the quasi-Newton method.The major update formula is similar to the one given by Dennis,Gay and Welsch (1981).In this paper,we state the detailed implement of the algorithm,such as the choice of active set,the solution of subproblem and the avoidance of zigzagging.We also prove the globally convergent property of the algorithm.
基金This research is partially supported by the National Natural Science Foundation of China(No. 69774012).
文摘A quasi-Newton method (QNM) for solving an unconstrained optimization problem in infinite dimensional spaces is presented in this paper. We apply the QNM algorithm to an identification problem for a nonlinear system of differential equations, that is, to identify the parameter vector q = q(t) appearing in the following system of differential equations, based on the measurement of the state , where is a measurement operator. We give two examples to show the algorithm.
基金This work was supported by the Natural Science Foundation of China (NSFC) under grant (11371287, 61663043) and Natural Science Basis Research Plan in Shaanxi Province of China under grant 2016JM5077.
文摘A quasi-Newton waveform relaxation (WR) algorithm for semi-linear reaction-diffusion equations is presented at first in this paper. Using the idea of energy estimate, a general proof method for convergence of the continuous case and the discrete case of quasi-Newton WR is given, which appears to be the superlinear rate. The semi-linear wave equation and semi-linear coupled equations can similarly be solved by quasi-Newton WR algorithm and be proved as convergent with the energy inequalities. Finally several parallel numerical experiments are implemented to confirm the effectiveness of the above theories.
文摘This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotropic media,where some additional boundary measurements are required.An equivalent formulation to the primary inverse problem is established based on the minimization of a functional cost,where a regularization term is employed to eliminate the oscillations of the noisy data.Moreover,an efficient algorithm is presented and tested for some numerical examples.
文摘We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced by the primaries. We investigate the equilibrium positions of the particle and their parametric variations, as well as the basins of attraction for various numerical methods and various values of the parameter λ.