The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
A new three dimensional simulation method is introduced to study the workspace of a 6 PSS (P denotes a prismatic kinematic pair, S denotes a spherical kinematic pair) parallel machine tool. This algorithm adopts the...A new three dimensional simulation method is introduced to study the workspace of a 6 PSS (P denotes a prismatic kinematic pair, S denotes a spherical kinematic pair) parallel machine tool. This algorithm adopts the method of numerical analysis to investigate the boundary points in a series of sections which form the surface of the workspace. That is, to study such points that have the largest polar radius on a certain section in a system of polar coordinates according to conditions of constraint. The constraint conditions considered in the article include the maximum and minimum displacements of each dieblock, the maximum and minimum angles of oscillation in each hinge. By converting the constraint inequalities into constraint equations, the largest polar radius corresponding to every constraint condition can be evaluated and the minimum one is used to decide the boundary point. This algorithm greatly simplifies the computational process and can be used to analyze any section of the workspace. It provides a theoretical basis for the structural design of such a machine tool.展开更多
This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic be...This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic benefit by using Life Cycle Cost (LCC) method and grey theory. The discussion shows conclusions that are beneficial to the production, management, and decision making of the enterprise.展开更多
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac...A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
Based on the internet technology,it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine.In order to capture the micro-shock signal induced by the incipient fault on ...Based on the internet technology,it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine.In order to capture the micro-shock signal induced by the incipient fault on the rotating parts,the reso- nance demodulation technology is utilized in the system.As a subsystem of the remote monitoring system,the embedded data acquisi- tion instrument not only integrates the demodulation board but also complete the collection and preprocess of monitoring data from different machines.Furthermore,through connecting to the internet,the data can be transferred to the remote diagnosis center and data reading and writing function can be finished in the database.At the same time,the problem of the IP address floating in the dial-up of web server is solved by the dynamic DNS technology.Finally,the remote diagnosis software developed on the Lab VIEW platform can analyze the monitoring data from manufacturing field.The research results have indicated that the equipment status can be monitored by the system effectively.展开更多
Highly accurate manufacture in machining industry can only be obtained with precise temperature control of the coolant (oil or water).Machine tool with more accurate,stable and advanced the precision of the working ...Highly accurate manufacture in machining industry can only be obtained with precise temperature control of the coolant (oil or water).Machine tool with more accurate,stable and advanced the precision of the working component cannot be developed without appropriate cooling.However,the machine tool coolers are facing the control hunting of cooling temperature and the dramatic variation of heat load in high-accuracy machining.The main objective of this study is to evaluate the influence of the hot-gas by-pass scheme and suction regulation for capacity control of a machine tool cooler system.In this study,experimental investigation on both hot-gas by-pass scheme and suction valve regulation for capacity control has been proposed.Effects of using capillary tube and thermostatic expansion valve along with different capacity control scheme have been investigated extensively in an environmental testing room.Cooling performance and power consumption of the cooler system have been measured and analyzed as well by comparing with different opening percentage of throttling valve under specific coolant temperature.The experimental results reveal that the power consumption will reduce slightly by capacity control using the hot-gas by-pass scheme but the coefficient of performance (COP) of the overall system will decrease.Lower coolant temperature will result in higher compressor power consumption as well.While conducting suction valve regulating for capacity control,energy-saving at 10%-12% can be obtained by using thermostatic expansion valve under different evaporator load.It also reveals that suction valve regulation along with adequate choice of thermostatic expansion valve can provide alternative choice for steady capacity control and substantial energy-saving.The proposed cooler systems with different capacity control schemes are not only more cost-effective than inverter driven system,but also can perform energy-saving and precise temperature control specific for high-accuracy machine tool cooling.展开更多
Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC ...Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC machine tools was built by considering the influences of the cutting tool geometrical parameters.The manufacturing CEs were produced by electric power,cutting tools,and cutting fluid consumed in manufacturing process. The parameters of cutting tools affected not only the CEs,but also the machining quality. Then the actual constraint models of the machine performance,machining quality were given in order to optimize the cutting parameters and achieve the low-CEs. Finally,a case was given to analyze the influences of the cutting tool angles on the manufacturing CEs. The results show that the CEs decrease as the rake angle and edge angle increase under the constraints of the machine specifications and machining quality.展开更多
By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, ...By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature measurement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool temperature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using internally controlled tools.展开更多
The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfre...The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfreedom control method are put forward.These results lay a foundation for the product development of the virtual axis NC machine tools展开更多
A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control sys...A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.展开更多
The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to r...The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to realize the rapid generation of roughing/finishing tool path for molar prosthesis. Simulation results show that the proposed algorithm prossesses characteristics of excellent stabilization, fast calculation speed and high machining accuracy.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the in...In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.展开更多
An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed ...An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.展开更多
This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One archit...This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.展开更多
A structure scheme for a novel hybrid machine tool (HMT) is proposed in this paper. In the scheme,a 4-DOFs 1PS+3TPS type spatial hybrid mechanism is utilized as main feed mechanism,with assistance of a two direction m...A structure scheme for a novel hybrid machine tool (HMT) is proposed in this paper. In the scheme,a 4-DOFs 1PS+3TPS type spatial hybrid mechanism is utilized as main feed mechanism,with assistance of a two direction movable worktable,multi-coordinates NC machining can be realized. In the main feed mechanism,fixed platform is connected with moving platform by three TPS driving links and one PS driving link,one translation DOF and three rotation DOFs can be achieved by it. This type HMT enjoys some advantages over its conventional counterparts:large workspace,good dexterity,etc. Closed form inverse displacement analysis model and inverse kinematic model for main feed mechanism are established. A fuzzy PID control scheme for machining control of HMTs with high tracking precision is proposed aiming at highly nonlinear,tightly coupled and uncertain characteristic of HMTs. Simulation researches for fuzzy PID control of HMTs are carried out. Simulation Results demonstrate the effectiveness and the Robostness of the fuzzy PID controller.展开更多
In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in th...In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.展开更多
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.
基金Ministerial Level Foundation(96J185 .1BQ0150) Fund for Reasearch on Doctoral Programs in Institutions of Higher Learning(1997000716)
文摘A new three dimensional simulation method is introduced to study the workspace of a 6 PSS (P denotes a prismatic kinematic pair, S denotes a spherical kinematic pair) parallel machine tool. This algorithm adopts the method of numerical analysis to investigate the boundary points in a series of sections which form the surface of the workspace. That is, to study such points that have the largest polar radius on a certain section in a system of polar coordinates according to conditions of constraint. The constraint conditions considered in the article include the maximum and minimum displacements of each dieblock, the maximum and minimum angles of oscillation in each hinge. By converting the constraint inequalities into constraint equations, the largest polar radius corresponding to every constraint condition can be evaluated and the minimum one is used to decide the boundary point. This algorithm greatly simplifies the computational process and can be used to analyze any section of the workspace. It provides a theoretical basis for the structural design of such a machine tool.
文摘This paper relates to a typical computer numerical control (CNC) machine, model FDXNC 128, and analyzes the payoff period quantitatively and forecasts the future maintenance cost and the evaluation of the economic benefit by using Life Cycle Cost (LCC) method and grey theory. The discussion shows conclusions that are beneficial to the production, management, and decision making of the enterprise.
文摘A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
文摘Based on the internet technology,it has become possible to complete remote monitoring and fault diagnosis for the numerical control machine.In order to capture the micro-shock signal induced by the incipient fault on the rotating parts,the reso- nance demodulation technology is utilized in the system.As a subsystem of the remote monitoring system,the embedded data acquisi- tion instrument not only integrates the demodulation board but also complete the collection and preprocess of monitoring data from different machines.Furthermore,through connecting to the internet,the data can be transferred to the remote diagnosis center and data reading and writing function can be finished in the database.At the same time,the problem of the IP address floating in the dial-up of web server is solved by the dynamic DNS technology.Finally,the remote diagnosis software developed on the Lab VIEW platform can analyze the monitoring data from manufacturing field.The research results have indicated that the equipment status can be monitored by the system effectively.
基金supported by Science Committee of Taiwan,China(Grant No. NSC 98-2622-E-167-029-CC3),and Industrial Technology Research Institute,Taiwan,China
文摘Highly accurate manufacture in machining industry can only be obtained with precise temperature control of the coolant (oil or water).Machine tool with more accurate,stable and advanced the precision of the working component cannot be developed without appropriate cooling.However,the machine tool coolers are facing the control hunting of cooling temperature and the dramatic variation of heat load in high-accuracy machining.The main objective of this study is to evaluate the influence of the hot-gas by-pass scheme and suction regulation for capacity control of a machine tool cooler system.In this study,experimental investigation on both hot-gas by-pass scheme and suction valve regulation for capacity control has been proposed.Effects of using capillary tube and thermostatic expansion valve along with different capacity control scheme have been investigated extensively in an environmental testing room.Cooling performance and power consumption of the cooler system have been measured and analyzed as well by comparing with different opening percentage of throttling valve under specific coolant temperature.The experimental results reveal that the power consumption will reduce slightly by capacity control using the hot-gas by-pass scheme but the coefficient of performance (COP) of the overall system will decrease.Lower coolant temperature will result in higher compressor power consumption as well.While conducting suction valve regulating for capacity control,energy-saving at 10%-12% can be obtained by using thermostatic expansion valve under different evaporator load.It also reveals that suction valve regulation along with adequate choice of thermostatic expansion valve can provide alternative choice for steady capacity control and substantial energy-saving.The proposed cooler systems with different capacity control schemes are not only more cost-effective than inverter driven system,but also can perform energy-saving and precise temperature control specific for high-accuracy machine tool cooling.
基金Research Fund for the Doctoral Program of Higher Education of China(No.20122125120013)Scientific Research Fund of Liaoning Provincial Education Department,China(No.L2013206)the Fundamental Research Funds for the Central Universities,China(Nos.3132014303,3132015087)
文摘Reducing carbon emissions( CEs) is the urgent demand all over the world. In order to realize the low-carbon numerical control( NC) machining, the evaluation model of a part's manufacturing carbon emission with NC machine tools was built by considering the influences of the cutting tool geometrical parameters.The manufacturing CEs were produced by electric power,cutting tools,and cutting fluid consumed in manufacturing process. The parameters of cutting tools affected not only the CEs,but also the machining quality. Then the actual constraint models of the machine performance,machining quality were given in order to optimize the cutting parameters and achieve the low-CEs. Finally,a case was given to analyze the influences of the cutting tool angles on the manufacturing CEs. The results show that the CEs decrease as the rake angle and edge angle increase under the constraints of the machine specifications and machining quality.
文摘By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature measurement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool temperature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using internally controlled tools.
文摘The structure features and driving modes of virtual axis NC machine tools are studied. Accor ding to different application requirements,the three axis control method,the five axis control method and the sixfreedom control method are put forward.These results lay a foundation for the product development of the virtual axis NC machine tools
文摘A feedforward compensation naethod of the motion errors of NC machine tools imple- mented with software is proposed , with which the motion errors can be compensated whithout changing the original computer control systems of the NC machine tools. The experimental results show that the circular interpolation profile machining errors decrease by a factor of 2/3 after com- pensated.
文摘The CAD model of molar prosthesis is usually stored in standard templete library (STIr) format. A new topological structure is given based on STL format and the vertex-based entity offset algorithm is presented to realize the rapid generation of roughing/finishing tool path for molar prosthesis. Simulation results show that the proposed algorithm prossesses characteristics of excellent stabilization, fast calculation speed and high machining accuracy.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.
文摘This paper describes the innovation schemes of the interface of a CNC machine which cannot communicate with a computer by a Direct Numerical Control(DNC)interface and the functions of a DNC interface system.One architecture of hardware and software of a practi- cal single-chip computer based on DNC interface system developed by the authors is given. Without any change of the original hardware and software,this DNC interface system has been used to innovate the CNC machine's interface to implement the direct communication between a computer and a CNC machine and to achieve no tape transmission of a part program and ma- chine parameters.It has been demonstrated that this DNC interface system has certain practical values in improving the reliability,efficiency and production management of CNC/NC machine.
文摘A structure scheme for a novel hybrid machine tool (HMT) is proposed in this paper. In the scheme,a 4-DOFs 1PS+3TPS type spatial hybrid mechanism is utilized as main feed mechanism,with assistance of a two direction movable worktable,multi-coordinates NC machining can be realized. In the main feed mechanism,fixed platform is connected with moving platform by three TPS driving links and one PS driving link,one translation DOF and three rotation DOFs can be achieved by it. This type HMT enjoys some advantages over its conventional counterparts:large workspace,good dexterity,etc. Closed form inverse displacement analysis model and inverse kinematic model for main feed mechanism are established. A fuzzy PID control scheme for machining control of HMTs with high tracking precision is proposed aiming at highly nonlinear,tightly coupled and uncertain characteristic of HMTs. Simulation researches for fuzzy PID control of HMTs are carried out. Simulation Results demonstrate the effectiveness and the Robostness of the fuzzy PID controller.
基金Project(60772089) supported by the National Natural Science Foundation of ChinaProject(20080440939) supported by the China Postdoctoral Science Foundation
文摘In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.