Dissolved organic matter(DOM)occupies a huge and uncharted molecular space.Given its properties,DOM can be presented as a promising biotechnological resource.However,research into bioactivities of DOM is still in earl...Dissolved organic matter(DOM)occupies a huge and uncharted molecular space.Given its properties,DOM can be presented as a promising biotechnological resource.However,research into bioactivities of DOM is still in early stages.In this study,the biotechnological potential of terrestrial and marine DOM,its molecular composition and their relationships are investigated.Samples were screened for their in vitro antibacterial,antifungal,anticancer and antioxidant activities.Antibacterial activity was detected against Staphylococcus aureus in almost all DOM samples,with freshwater DOM showing the lowest IC50 values.Most samples also inhibited Staphylococcus epidermidis,and four DOM extracts showed up to fourfold higher potency than the reference drug.Antifungal activity was limited to only porewater DOM towards human dermatophyte Trichophyton rubrum.No significant in vitro anticancer activity was observed.Low antioxidant potential was exerted.The molecular characterization by FT-ICR MS allowed a broad compositional overview.Three main distinguished groups have been identified by PCoA analyses.Antibacterial activities are related to high aromaticity content and highly-unsaturated molecular formulae(O-poor).Antifungal effect is correlated with highly-unsaturated molecular formulae(O-rich).Antioxidant activity is positively related to the presence of double bonds and polyphenols.This study evidenced for the first time antibacterial and antifungal activity in DOM with potential applications in cosmeceutical,pharmaceutical and aquaculture industry.The lack of cytotoxicity and the almost unlimited presence of this organic material may open new avenues in future marine bioprospect-ing efforts.展开更多
Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key fac...Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carbon(DOC) to SOC. In summary, SOM of wetlands might characterize by more Phs and lignin and less Nc moieties in pyrolytic products. The use of Pyrolysis gas-chromatography/mass-spectrometry(Py-GC/MS) technology provided detailed information on the molecular characteristics of SOM from a typical freshwater wetland.展开更多
The composition and vertical profiles of low molecular-weight organic acids (LMWOAs) and the contribution of them to dissolved organic matter (DOM) in sediment porewaters in Bosten Lake, Xinjiang, China were inves...The composition and vertical profiles of low molecular-weight organic acids (LMWOAs) and the contribution of them to dissolved organic matter (DOM) in sediment porewaters in Bosten Lake, Xinjiang, China were investigated. The results showed that total concentration of LMWOAs was up to 94.5 μmol/L and their proportion in DOM was 5.6%, suggesting that LMWOAs were important chemical components in DOM in lake sediment porewaters. Among the seven LMWOAs, pyruvic and acetic acid had the highest concentrations with 26.30 and 8.31 μmol/L, accounting for 51.4% and 14.92% of LMWOAs, respectively. Trifluoroacetic and sorbic acid had the lowest concentrations, indicating that the compositions of LMWOAs in relative reducing environments were largely different from those reported in glacier, atmosphere and soils. The concentrations of lactic, acetic, formic, sorbic and oxalic acid decreased with increasing depth, probably relating to stronger microbial activities in the initial stage of early diagenesis. Trifluoroacetic acid was mainly anthropogenic with its concentration, showing a diusive trend from the surface to bottom sediments. The concentrations of lactic acid and nitrate generally showed a consistent profile. The increasing concentration of pyruvic acid in the vertical profile was just opposite to that of sulfate, revealing a significant negative relationship between them. Oxalic acid remained constant except for an obvious peak at 6 cm depth. The results indicated the diversities in sources and behaviors for various LMWOAs during early diagenesis in sediments.展开更多
The molecular weight distribution (MWD) of dissolved organic matter (DOM) in lake waters from Lake Hongfeng was examined using high performance size exclusion chromatography (HPSEC) with UV-vis absorbance and fluoresc...The molecular weight distribution (MWD) of dissolved organic matter (DOM) in lake waters from Lake Hongfeng was examined using high performance size exclusion chromatography (HPSEC) with UV-vis absorbance and fluorescence detection. The elution curves obtained by absorbance and fluorescence techniques expressed similar patterns, with the exception of diminishing of large fraction and the peaks behind several seconds in fluorescence chromatograms. According to its molecular weight (MW), DOM in water samples is divided into several fractions: large ({>3.5} kDa); medium-large ({3.5}-{2.0} kDa); medium ({2.0}-{1.0} kDa) and small ({<1.0} kDa). The average molecular weight was calculated using the elution curve detected by UV-vis absorbance and fluorescence detection techniques. The results showed that the weight-average molecular weight (Mw) and number-average molecular weight (Mn) calculated by UV-vis absorbance techniques range from 1750 to 2050 Dalton and from 1450 to 1850 Dalton, respectively. And the Mw and Mn obtained by fluorescence detection are lower by 50 to 400 Dalton. As a reference, the molecular weight of Fluka humic acid (FHA) is larger than that of water samples by about 200 Dalton. The average molecular weight of DOM for water samples collected in March and July was compared. The results revealed that the molecular weight is lower for water samples obtained in July than that obtained in March, indicating the ambient environment has an influence on the molecular weight, including photo-degradation and biological activity.展开更多
At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stag...At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stage.The fate of nano⁃TiO2 in the aquatic environment has become the key factor which affects its safety application and nanoecotoxicology.This paper aims to investigate how the dissolved organic matters(DOM),especially the molecular weight fractions in the aquatic environment,affect the aggregation,stability,and fate of nano⁃TiO2,and the interaction mechanism of DOM and nano⁃TiO2.Results of dynamic light scattering(DLS)showed that the molecular weight of DOM molecules caused different aggregation rates of nano⁃TiO2 in aqueous solution.Fourier Transform infrared spectroscopy(FTIR)results indicated the molecular structure is characteristics of DOM fractions and the mechanisms of bonds formation between DOM and nano⁃TiO2.Results of three⁃dimensional excitation⁃emission matrices(3D⁃EEM)confirmed the FTIR results and implied the increase of the stability of theπ-πconjugated system in the presence of DOM.In addition,low molecular weight of DOM fractions appeared to show more affinity with nano⁃TiO2 than high molecular weight fractions.展开更多
This study investigated the C mineralization and chemical modification of a typical tropical soil amended with regional compost of different stability. Compost samples were produced from coffee pulp and fruit and vege...This study investigated the C mineralization and chemical modification of a typical tropical soil amended with regional compost of different stability. Compost samples were produced from coffee pulp and fruit and vegetable waste in a method of small heap composting and the samples were collected in three different phases of composting. Both the fresh waste and compost samples were analyzed for their phytotoxicity. These samples were added to a tropical Nitisol at the rate of 48 t ha?1 and a control was set up without amendment. The CO2-C respired was determined during 98 days of incubation and the incubated samples were taken at the start and end of incubation for molecular-chemical analysis by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS). The fresh waste yielded a germination index (GI) 100%). The CO2-C respired was best explained by a first order plus linear model. A soil amended with a compost taken at the thermophilic phase attained the lowest overall organic C loss. In general, the Py-FIMS revealed a significant enrichment of stable N-compounds during the incubation in all amended soils compared to the control. Furthermore, among the compost-soil mixtures Py-FIMS indicated significantly higher increases in the proportions of carbohydrates, peptides and phenols/lignin monomers at the expense of fatty acids and sterols in soil amended with composts from the thermophilic phase. Thermal volatilization curves of Py-FIMS indicated enrichments of stable N-compounds and peptides in compost amended soil. This was a result of enhanced decomposition and stabilization of decomposition products by physical protection through association with clay and soil aggregates. In summary, application of compost shortly after reaching the high temperature phase was shown to be more efficient in organic C sequestration in a clay-rich tropical agricultural soil than mature composts.展开更多
Coal-bearing strata are widespread in the western Great Khingan Mountains. Abundant coal resources have been found in the Jurassic Alatanheli Groups, the Cretaceous Bayanhua Groups, the Damoguaihe Formation and the Yi...Coal-bearing strata are widespread in the western Great Khingan Mountains. Abundant coal resources have been found in the Jurassic Alatanheli Groups, the Cretaceous Bayanhua Groups, the Damoguaihe Formation and the Yimin Formation. The organic geochemical characteristics were analyzed in combination with hydrocarbon source rock evaluation and molecular organic geochemistry experiments, and the coal gas potential of coal seams was evaluated. The source rock evaluation results indicated that the Mesozoic coal samples have the characteristics of high organic matter abundance(TOC>30%), low maturity(Ro values of approximately 0.6%), and type Ⅲ composition. The hydrocarbon generation potentials of the Alatanheli Groups and Bayanhua Groups are high, while the generation potentials of the Damoguaihe Formation and the Yimin Formation are low. The results of geochemistry show that the depositional environment of the coal seam was a lacustrine, oxidizing environment with a low salinity, and the source of the organic matter was mainly higher plants. Affected by weak degradation, the coal seams mainly formed low-maturity gas of thermal catalytic origin. The Cretaceous coal seams contain a large amount of phytoplankton groups deposited in a low-stability environment affected by a transgression event, and the potential range varied widely. For the Jurassic coal seams, the depositional environment was more stable, and the coal seams feature a higher coal-forming gas potential.展开更多
Phosphorus( P) has been recognized as a major limited nutrient responsible for the eutrophication of surface waters. Water treatment residuals( WTRs) are safe by-products of water treatment plants and are cost-efficie...Phosphorus( P) has been recognized as a major limited nutrient responsible for the eutrophication of surface waters. Water treatment residuals( WTRs) are safe by-products of water treatment plants and are cost-efficient adsorbents. In this study, batch experiments and column experiments based on WTRs were employed to study the characteristics of P adsorption and the effects of lowmolecular-weight organic acids( LMWOAs)( citric acid, oxalic acid,and tartaric acid) on P adsorption. Different models of adsorption were used to describe equilibrium and kinetic data. The adsorption data were fitted well by a pseudo-second order kinetic model. The adsorption process was determined to be controlled by three steps of diffusion mechanisms through the intra-particle model.The adsorption equilibrium was well described by the Langmuir,Freundlich,Redlich-Peterson,and Sips isotherm models. Batch and continuous flow experiments indicated that the LMWOAs exhibited inhibitory action,and as pH increased,the inhibitory action became weaker for all the three acids. The effect of LMWOAs concentration was not significant on inhibition. The effects of LMWOAs were closely related to reaction time.展开更多
With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutra...With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The weight-average (Mw) and number-averaged (Mn) molecular weight of these fractions ranged from 1688 to 2355 Da and from 1338 to 1928 Da, respectively. A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Proteinlike fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (f450/500) indicated that hydrophobic fractions may derive from terrestrial sources, and the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and the sources for these 6 fractions from Lake Hongfeng.展开更多
The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was...The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P 〈 0.01), and the influences of soil pH and clay content on phenanthrene desorption were insignificant (P 〉 0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NaN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NAN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NaN3.展开更多
Dissolved organic matter(DOM)in soils drives biogeochemical cycling and soil functions in different directions depending on its molecular signature.Notably,there is a distinct paucity of information concerning how the...Dissolved organic matter(DOM)in soils drives biogeochemical cycling and soil functions in different directions depending on its molecular signature.Notably,there is a distinct paucity of information concerning how the molecular signatures of soil DOM vary with different degrees of weathering across wide geographic scales.Herein,we resolved the DOM molecular signatures from 22 diverse Chinese reference soils and linked them with soil organic matter and weathering-related mineralogical properties.The mixed-effects models revealed that the yields of DOM were determined by soil organic carbon content,whereas the molecular signature of DOM was primarily constrained by the weathering-related dimension.The soil weathering index showed a positive effect on the lability and a negative effect on the aromaticity of DOM.Specifically,DOM in highly weathered acidic soils featured more amino sugars,carbohydrates,and aliphatics,as well as less O-rich polyphenols and condensed aromatics,thereby conferring a higher DOM biolability and lower DOM aromaticity.This study highlights the dominance of the weathering-related dimension in constraining the molecular signatures and potential functions of DOM in soils across a wide geographic scale.展开更多
The aim of this study was to obtain a better understanding of the range of organic molecular weight (MW) causing membrane fouling through the comparison between direct UF and in-line coagulation (without settling)...The aim of this study was to obtain a better understanding of the range of organic molecular weight (MW) causing membrane fouling through the comparison between direct UF and in-line coagulation (without settling)/UF process. The experimental results indicated that, when raw water with organics was treated and the MW of more than half of the organics was less than 1 kDa, membrane fouling was rather serious by only UF and coagulation could improve the fouling for the treatment of raw water. Besides, coagulation/UF could remove organics in each region, and organics with MW greater than 30 kDa were the most possible matters causing membrane fouling, while organics with MW less than 1 kDa were in due to few organics removed. Therefore, organics with MW greater them brane foulingibly responsible for membrane fouling 30 kDa were the major factor of membrane fouling.展开更多
Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica ...Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.展开更多
The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were...The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.展开更多
The shale gas is an unconventional supplementary energy to traditional fossil energy,and is stored in layered rocks with low permeability and porosity,which leads to the difficulty for exploration of shale gas.Therefo...The shale gas is an unconventional supplementary energy to traditional fossil energy,and is stored in layered rocks with low permeability and porosity,which leads to the difficulty for exploration of shale gas.Therefore,using CO_(2) gas to displace shale gas has become an important topic.In this work,we use molecular simulations to study the displacement of shale gas by flue gas rather than CO_(2),in which flue gas is modeled as a binary mixture of CO_(2) and N_(2) and the shale model is represented by inorganic Illite and organic methylnaphthalene.CH_(4) is used as a shale gas model.Compared to the pure CO_(2),flue gas is easily available and the cost of displacement by flue gas would become lower.Results indicate that the pore size of shale is an important factor in the process of displacing shale gas and simultaneously sequestrating flue gas,while the flue gas N_(2)-CO_(2) ratio shows a small effect on the process of CH_(4) displacement,because the high partial pressure of flue gas is the main driving force for displacement of shale gas.Moreover,the geological condition also has a significant effect on the process of CH_(4) displacement by flue gas.Therefore,we suggest that the burial depth of 1 km is suitable operation condition for shale gas displacement.It is expected that this work provides a useful guidance for exploitation of shale gas and sequestration of greenhouse gas.展开更多
Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectrosco...Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectroscopy. A good linear relationship existed between total organic carbon and excitation in the range of 350 to 450 nm though the content of organic carbon and pH of the samples vary in a wide range. No significant correlation between relative excitation intensity and average molecular weight of WSOC and FA was found, but the partial correlation became significant with pH as the controlling factor for WSOC samples. The relative excitation intensity showed a general trend of increasing from south to north in the study area. The pH value might play an important role in regulating the fluorescent spatial variation of WSOC. S153 A展开更多
[Objectives]The spatial distribution characteristics of organic acids in two late-blooming Rhododendron species(Rhododendron decorum and Rhododendron stamineum)in Guizhou Baili Rhododendron National Forest Park were e...[Objectives]The spatial distribution characteristics of organic acids in two late-blooming Rhododendron species(Rhododendron decorum and Rhododendron stamineum)in Guizhou Baili Rhododendron National Forest Park were explored,in order to provide reference for exploring the plant-soil relationship of subtropical forest.[Methods]The fresh leaf,stem,root,litter,humus and soil samples of R.decorum and R.stamineum were collected.The contents of eight low molecular weight organic acids including oxalic acid,tartaric acid,malic acid,citric acid,acetic acid,lactic acid,succinic acid and formic acid were determined by high performance liquid chromatography(HPLC).[Results]Oxalic acid is the main organic acid in the two species of Rhododendron.Among different samples,the content of organic acids was in the following order:root>fresh leaf>humus>litter>stem>soil.[Conclusions]The content of organic acids in the root was significantly higher than that in other parts.The types of organic acids in stems were the least.展开更多
Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle dur...Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle during life activities. Photochemical reactions are pivotal for LMWOAs' origination and play a large role in determining their diversity and their ultimate fate. Within the long time that organic matter is preserved in sediments, it can be decomposed and converted to release organic and inorganic pollutants as well as C, N, and P nutrients, which are of potential ecological risk in causing secondary pollution to lake water. The sediment pool is a comprehensive and complex compartment closely associated with overlying water by various biochemical processes, during which LMWOAs play critical roles to transport and transform elements. This article elucidates geochemical behaviors of LMWOAs in the surface environment in details, taking natural water, soil, and aerosol as examples, focusing on reviewing research developments on sources and characteristics, migration and mineralization of LMWOAs and relevant environmental effects. Simultaneously, this review article depicts the categories and contents of LMWOAs or their contribution to DOC in environmental media, and evaluates their importance during organic matter early diagenesis. Through concluding and discussing the conversion mechanisms and influencing factors, the next research orientations on LMWOAs in lake ecosystems are determined, mainly concerning relationships with hydrochemical parameters and microorganisms, and interactions with pollutants. This will enrich the knowledge on organic matter degradation and related environmental effects, and help reconstruct a theoretical framework for organic compound succession and influencing factors, providing basic data for lake eutrophication and ecological risk assessment, conducive to better control over water pollution and proper management of water quality.展开更多
基金Marie Skłodowska-Curie individual Fellowship,H2020-MSCA-IF-2016749586,Teresa S.Catalá,Carl von Ossietzky Universität Oldenburg.
文摘Dissolved organic matter(DOM)occupies a huge and uncharted molecular space.Given its properties,DOM can be presented as a promising biotechnological resource.However,research into bioactivities of DOM is still in early stages.In this study,the biotechnological potential of terrestrial and marine DOM,its molecular composition and their relationships are investigated.Samples were screened for their in vitro antibacterial,antifungal,anticancer and antioxidant activities.Antibacterial activity was detected against Staphylococcus aureus in almost all DOM samples,with freshwater DOM showing the lowest IC50 values.Most samples also inhibited Staphylococcus epidermidis,and four DOM extracts showed up to fourfold higher potency than the reference drug.Antifungal activity was limited to only porewater DOM towards human dermatophyte Trichophyton rubrum.No significant in vitro anticancer activity was observed.Low antioxidant potential was exerted.The molecular characterization by FT-ICR MS allowed a broad compositional overview.Three main distinguished groups have been identified by PCoA analyses.Antibacterial activities are related to high aromaticity content and highly-unsaturated molecular formulae(O-poor).Antifungal effect is correlated with highly-unsaturated molecular formulae(O-rich).Antioxidant activity is positively related to the presence of double bonds and polyphenols.This study evidenced for the first time antibacterial and antifungal activity in DOM with potential applications in cosmeceutical,pharmaceutical and aquaculture industry.The lack of cytotoxicity and the almost unlimited presence of this organic material may open new avenues in future marine bioprospect-ing efforts.
基金Under the auspices of the National Key R&D Program of China(No.2016YFC0500404)the National Natural Science Foundation of China(No.41671087,41671081,41771103)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2018265)
文摘Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carbon(DOC) to SOC. In summary, SOM of wetlands might characterize by more Phs and lignin and less Nc moieties in pyrolytic products. The use of Pyrolysis gas-chromatography/mass-spectrometry(Py-GC/MS) technology provided detailed information on the molecular characteristics of SOM from a typical freshwater wetland.
基金supported by the National Basic Research Program (973) of China (No. 2008CB418200)the National Natural Science Foundation of China (No.U0833603, 40632011, 40873080)
文摘The composition and vertical profiles of low molecular-weight organic acids (LMWOAs) and the contribution of them to dissolved organic matter (DOM) in sediment porewaters in Bosten Lake, Xinjiang, China were investigated. The results showed that total concentration of LMWOAs was up to 94.5 μmol/L and their proportion in DOM was 5.6%, suggesting that LMWOAs were important chemical components in DOM in lake sediment porewaters. Among the seven LMWOAs, pyruvic and acetic acid had the highest concentrations with 26.30 and 8.31 μmol/L, accounting for 51.4% and 14.92% of LMWOAs, respectively. Trifluoroacetic and sorbic acid had the lowest concentrations, indicating that the compositions of LMWOAs in relative reducing environments were largely different from those reported in glacier, atmosphere and soils. The concentrations of lactic, acetic, formic, sorbic and oxalic acid decreased with increasing depth, probably relating to stronger microbial activities in the initial stage of early diagenesis. Trifluoroacetic acid was mainly anthropogenic with its concentration, showing a diusive trend from the surface to bottom sediments. The concentrations of lactic acid and nitrate generally showed a consistent profile. The increasing concentration of pyruvic acid in the vertical profile was just opposite to that of sulfate, revealing a significant negative relationship between them. Oxalic acid remained constant except for an obvious peak at 6 cm depth. The results indicated the diversities in sources and behaviors for various LMWOAs during early diagenesis in sediments.
文摘The molecular weight distribution (MWD) of dissolved organic matter (DOM) in lake waters from Lake Hongfeng was examined using high performance size exclusion chromatography (HPSEC) with UV-vis absorbance and fluorescence detection. The elution curves obtained by absorbance and fluorescence techniques expressed similar patterns, with the exception of diminishing of large fraction and the peaks behind several seconds in fluorescence chromatograms. According to its molecular weight (MW), DOM in water samples is divided into several fractions: large ({>3.5} kDa); medium-large ({3.5}-{2.0} kDa); medium ({2.0}-{1.0} kDa) and small ({<1.0} kDa). The average molecular weight was calculated using the elution curve detected by UV-vis absorbance and fluorescence detection techniques. The results showed that the weight-average molecular weight (Mw) and number-average molecular weight (Mn) calculated by UV-vis absorbance techniques range from 1750 to 2050 Dalton and from 1450 to 1850 Dalton, respectively. And the Mw and Mn obtained by fluorescence detection are lower by 50 to 400 Dalton. As a reference, the molecular weight of Fluka humic acid (FHA) is larger than that of water samples by about 200 Dalton. The average molecular weight of DOM for water samples collected in March and July was compared. The results revealed that the molecular weight is lower for water samples obtained in July than that obtained in March, indicating the ambient environment has an influence on the molecular weight, including photo-degradation and biological activity.
基金the National Natural Science Foundation of China(Grant No.51408162)the Special Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016T90303)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M551258)the Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14077)。
文摘At present,a growing number of consumer products contain engineered nanoparticle TiO2(nano⁃TiO2),which has resulted in the consequences of nano⁃TiO2 entering the aquatic environment directly or indirectly at some stage.The fate of nano⁃TiO2 in the aquatic environment has become the key factor which affects its safety application and nanoecotoxicology.This paper aims to investigate how the dissolved organic matters(DOM),especially the molecular weight fractions in the aquatic environment,affect the aggregation,stability,and fate of nano⁃TiO2,and the interaction mechanism of DOM and nano⁃TiO2.Results of dynamic light scattering(DLS)showed that the molecular weight of DOM molecules caused different aggregation rates of nano⁃TiO2 in aqueous solution.Fourier Transform infrared spectroscopy(FTIR)results indicated the molecular structure is characteristics of DOM fractions and the mechanisms of bonds formation between DOM and nano⁃TiO2.Results of three⁃dimensional excitation⁃emission matrices(3D⁃EEM)confirmed the FTIR results and implied the increase of the stability of theπ-πconjugated system in the presence of DOM.In addition,low molecular weight of DOM fractions appeared to show more affinity with nano⁃TiO2 than high molecular weight fractions.
文摘This study investigated the C mineralization and chemical modification of a typical tropical soil amended with regional compost of different stability. Compost samples were produced from coffee pulp and fruit and vegetable waste in a method of small heap composting and the samples were collected in three different phases of composting. Both the fresh waste and compost samples were analyzed for their phytotoxicity. These samples were added to a tropical Nitisol at the rate of 48 t ha?1 and a control was set up without amendment. The CO2-C respired was determined during 98 days of incubation and the incubated samples were taken at the start and end of incubation for molecular-chemical analysis by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS). The fresh waste yielded a germination index (GI) 100%). The CO2-C respired was best explained by a first order plus linear model. A soil amended with a compost taken at the thermophilic phase attained the lowest overall organic C loss. In general, the Py-FIMS revealed a significant enrichment of stable N-compounds during the incubation in all amended soils compared to the control. Furthermore, among the compost-soil mixtures Py-FIMS indicated significantly higher increases in the proportions of carbohydrates, peptides and phenols/lignin monomers at the expense of fatty acids and sterols in soil amended with composts from the thermophilic phase. Thermal volatilization curves of Py-FIMS indicated enrichments of stable N-compounds and peptides in compost amended soil. This was a result of enhanced decomposition and stabilization of decomposition products by physical protection through association with clay and soil aggregates. In summary, application of compost shortly after reaching the high temperature phase was shown to be more efficient in organic C sequestration in a clay-rich tropical agricultural soil than mature composts.
基金the National Natural Science Foundation of China(Grant No.41430322)The anonymous journal reviewers and editors are acknowledged for their valuable comments.
文摘Coal-bearing strata are widespread in the western Great Khingan Mountains. Abundant coal resources have been found in the Jurassic Alatanheli Groups, the Cretaceous Bayanhua Groups, the Damoguaihe Formation and the Yimin Formation. The organic geochemical characteristics were analyzed in combination with hydrocarbon source rock evaluation and molecular organic geochemistry experiments, and the coal gas potential of coal seams was evaluated. The source rock evaluation results indicated that the Mesozoic coal samples have the characteristics of high organic matter abundance(TOC>30%), low maturity(Ro values of approximately 0.6%), and type Ⅲ composition. The hydrocarbon generation potentials of the Alatanheli Groups and Bayanhua Groups are high, while the generation potentials of the Damoguaihe Formation and the Yimin Formation are low. The results of geochemistry show that the depositional environment of the coal seam was a lacustrine, oxidizing environment with a low salinity, and the source of the organic matter was mainly higher plants. Affected by weak degradation, the coal seams mainly formed low-maturity gas of thermal catalytic origin. The Cretaceous coal seams contain a large amount of phytoplankton groups deposited in a low-stability environment affected by a transgression event, and the potential range varied widely. For the Jurassic coal seams, the depositional environment was more stable, and the coal seams feature a higher coal-forming gas potential.
基金National Water Pollution Control and Management Key Project,China(No.2009ZX07318-008-006)
文摘Phosphorus( P) has been recognized as a major limited nutrient responsible for the eutrophication of surface waters. Water treatment residuals( WTRs) are safe by-products of water treatment plants and are cost-efficient adsorbents. In this study, batch experiments and column experiments based on WTRs were employed to study the characteristics of P adsorption and the effects of lowmolecular-weight organic acids( LMWOAs)( citric acid, oxalic acid,and tartaric acid) on P adsorption. Different models of adsorption were used to describe equilibrium and kinetic data. The adsorption data were fitted well by a pseudo-second order kinetic model. The adsorption process was determined to be controlled by three steps of diffusion mechanisms through the intra-particle model.The adsorption equilibrium was well described by the Langmuir,Freundlich,Redlich-Peterson,and Sips isotherm models. Batch and continuous flow experiments indicated that the LMWOAs exhibited inhibitory action,and as pH increased,the inhibitory action became weaker for all the three acids. The effect of LMWOAs concentration was not significant on inhibition. The effects of LMWOAs were closely related to reaction time.
基金supported by the China’s Na-tional Basic Research Program (No. 2008CB418200)the National Knowledge Innovation Program of Chinese Academy of Sciences (No. kzcx2-yw-102)the Nation-al Natural Science Foundation of China (No. U0833603,40873079, 40703022).
文摘With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The weight-average (Mw) and number-averaged (Mn) molecular weight of these fractions ranged from 1688 to 2355 Da and from 1338 to 1928 Da, respectively. A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Proteinlike fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (f450/500) indicated that hydrophobic fractions may derive from terrestrial sources, and the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and the sources for these 6 fractions from Lake Hongfeng.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. kzcx1- yw-06-03)the National Natural Science Foundation of China (No. 40730740, 20621703)
文摘The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P 〈 0.01), and the influences of soil pH and clay content on phenanthrene desorption were insignificant (P 〉 0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NaN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NAN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NaN3.
基金financially supported by the National Natural Science Foundation of China(42122054,42192513,41807360)Guangdong Basic and Applied Basic Research Foundation(2021B1515020082)+1 种基金Key Platform and Scientific Research Projects of Guangdong Provincial Education Department(2019KZDXM028,and 2020KCXTD006)Science and Technology Development Fund Project of Shenzhen(JCYJ20190809142611503 and JCYJ20190809162205531).
文摘Dissolved organic matter(DOM)in soils drives biogeochemical cycling and soil functions in different directions depending on its molecular signature.Notably,there is a distinct paucity of information concerning how the molecular signatures of soil DOM vary with different degrees of weathering across wide geographic scales.Herein,we resolved the DOM molecular signatures from 22 diverse Chinese reference soils and linked them with soil organic matter and weathering-related mineralogical properties.The mixed-effects models revealed that the yields of DOM were determined by soil organic carbon content,whereas the molecular signature of DOM was primarily constrained by the weathering-related dimension.The soil weathering index showed a positive effect on the lability and a negative effect on the aromaticity of DOM.Specifically,DOM in highly weathered acidic soils featured more amino sugars,carbohydrates,and aliphatics,as well as less O-rich polyphenols and condensed aromatics,thereby conferring a higher DOM biolability and lower DOM aromaticity.This study highlights the dominance of the weathering-related dimension in constraining the molecular signatures and potential functions of DOM in soils across a wide geographic scale.
基金Sponsored by the Tianjin Municipal Science and Technology Commission(Grant No.05FZZDSH00500)
文摘The aim of this study was to obtain a better understanding of the range of organic molecular weight (MW) causing membrane fouling through the comparison between direct UF and in-line coagulation (without settling)/UF process. The experimental results indicated that, when raw water with organics was treated and the MW of more than half of the organics was less than 1 kDa, membrane fouling was rather serious by only UF and coagulation could improve the fouling for the treatment of raw water. Besides, coagulation/UF could remove organics in each region, and organics with MW greater than 30 kDa were the most possible matters causing membrane fouling, while organics with MW less than 1 kDa were in due to few organics removed. Therefore, organics with MW greater them brane foulingibly responsible for membrane fouling 30 kDa were the major factor of membrane fouling.
基金supported by the National Natural Science Foundation of China(Nos.50525311,20734006 and 50621302)
文摘Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.
文摘The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.
文摘The shale gas is an unconventional supplementary energy to traditional fossil energy,and is stored in layered rocks with low permeability and porosity,which leads to the difficulty for exploration of shale gas.Therefore,using CO_(2) gas to displace shale gas has become an important topic.In this work,we use molecular simulations to study the displacement of shale gas by flue gas rather than CO_(2),in which flue gas is modeled as a binary mixture of CO_(2) and N_(2) and the shale model is represented by inorganic Illite and organic methylnaphthalene.CH_(4) is used as a shale gas model.Compared to the pure CO_(2),flue gas is easily available and the cost of displacement by flue gas would become lower.Results indicate that the pore size of shale is an important factor in the process of displacing shale gas and simultaneously sequestrating flue gas,while the flue gas N_(2)-CO_(2) ratio shows a small effect on the process of CH_(4) displacement,because the high partial pressure of flue gas is the main driving force for displacement of shale gas.Moreover,the geological condition also has a significant effect on the process of CH_(4) displacement by flue gas.Therefore,we suggest that the burial depth of 1 km is suitable operation condition for shale gas displacement.It is expected that this work provides a useful guidance for exploitation of shale gas and sequestration of greenhouse gas.
基金National Natural Science Foundation of China No. 40024101
文摘Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectroscopy. A good linear relationship existed between total organic carbon and excitation in the range of 350 to 450 nm though the content of organic carbon and pH of the samples vary in a wide range. No significant correlation between relative excitation intensity and average molecular weight of WSOC and FA was found, but the partial correlation became significant with pH as the controlling factor for WSOC samples. The relative excitation intensity showed a general trend of increasing from south to north in the study area. The pH value might play an important role in regulating the fluorescent spatial variation of WSOC. S153 A
基金Supported by Project of Guizhou Provincial Characteristic Key Laboratory(QJHKY[2021]002)Forestry Science and Technology Project of Guizhou Province(QLKH[2018]11).
文摘[Objectives]The spatial distribution characteristics of organic acids in two late-blooming Rhododendron species(Rhododendron decorum and Rhododendron stamineum)in Guizhou Baili Rhododendron National Forest Park were explored,in order to provide reference for exploring the plant-soil relationship of subtropical forest.[Methods]The fresh leaf,stem,root,litter,humus and soil samples of R.decorum and R.stamineum were collected.The contents of eight low molecular weight organic acids including oxalic acid,tartaric acid,malic acid,citric acid,acetic acid,lactic acid,succinic acid and formic acid were determined by high performance liquid chromatography(HPLC).[Results]Oxalic acid is the main organic acid in the two species of Rhododendron.Among different samples,the content of organic acids was in the following order:root>fresh leaf>humus>litter>stem>soil.[Conclusions]The content of organic acids in the root was significantly higher than that in other parts.The types of organic acids in stems were the least.
基金financially supported by the National Natural Sciences Foundation of China(No.41373138,41003055,41261140337)the National Science and Technology Major Special Project(No.2011ZX07212-007)State Key Laboratory of Environmental Geochemistry(No.SKLEG2013404),Institute of geochemistry, Chinese Academy of Sciences
文摘Low molecular weight organic acids (LMWOAs) are prevalent on the earth's surface. They are vital intermediate products during metabolic pathways of organic matter and participate in the tricarboxylic acid cycle during life activities. Photochemical reactions are pivotal for LMWOAs' origination and play a large role in determining their diversity and their ultimate fate. Within the long time that organic matter is preserved in sediments, it can be decomposed and converted to release organic and inorganic pollutants as well as C, N, and P nutrients, which are of potential ecological risk in causing secondary pollution to lake water. The sediment pool is a comprehensive and complex compartment closely associated with overlying water by various biochemical processes, during which LMWOAs play critical roles to transport and transform elements. This article elucidates geochemical behaviors of LMWOAs in the surface environment in details, taking natural water, soil, and aerosol as examples, focusing on reviewing research developments on sources and characteristics, migration and mineralization of LMWOAs and relevant environmental effects. Simultaneously, this review article depicts the categories and contents of LMWOAs or their contribution to DOC in environmental media, and evaluates their importance during organic matter early diagenesis. Through concluding and discussing the conversion mechanisms and influencing factors, the next research orientations on LMWOAs in lake ecosystems are determined, mainly concerning relationships with hydrochemical parameters and microorganisms, and interactions with pollutants. This will enrich the knowledge on organic matter degradation and related environmental effects, and help reconstruct a theoretical framework for organic compound succession and influencing factors, providing basic data for lake eutrophication and ecological risk assessment, conducive to better control over water pollution and proper management of water quality.