Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these char...Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.展开更多
There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In ...There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In this study,we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes:Actb,Ankrd27,CypA,Gapdh,Hprt1,Mrpl10,Pgk1,Rictor,Rn18s,Tbp,Ubc,Ubxn11,and Ywhaz.Our results show that the expression of Ankrd27,Ubc,and Tbp were stable after spinal cord injury,while Actb was the most unstable internal control gene.Ankrd27,Ubc,Tbp,and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression.Target gene expression levels and changes over time were similar when Ankrd27,Ubc,and Tbp were used as internal controls but different when Actb was used as an internal control.We recommend that Ankrd27,Ubc,and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research.This study was approved by the Administration Committee of Experimental Animals,Jiangsu Province,China(approval No.20180304-008)on March 4,2018.展开更多
AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed...AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.展开更多
Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and vali...Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 (ACT-2), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), β-tubulin (β-TUB), and 18 S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene (Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ andβ-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further fimetional genomics studies in this economically valuable marine bivalve.展开更多
Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively l...Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively little is known about regulation of expression for these splicing factor proteins. One of these proteins is the evolutionarily-conserved Drosophila RNP-4F splicing assembly factor. This protein is transcribed from a single gene into two developmentally regulated mRNAs that differ in their 5’-UTR structure. In the longer isoform, known to be abundant in the developing fly central nervous system, a conserved retained intron which folds into a stem-loop has been implicated in expression control of the mRNA. Here, we describe construction and utilization of several new rnp-4f gene expression study vectors using a GFP reporter in the ΦC31 system. The results confirm our previous observation that presence of the regulatory stem-loop enhances RNP-4F protein expression. However, in that study, the enhancement factor protein was not identified. We show here that overexpression of the RNP-4F transgene compared to the control results in additional translation, as indicated by the GFP reporter in the fluorescent images. These results are interpreted to show that RNP-4F protein acts back on its own mRNA 5’-UTR regulatory region via a feedback pathway to enhance protein synthesis in the developing fly central nervous system. A model is proposed to explain the molecular mechanism behind rnp-4f gene expression control.展开更多
Objective:To assess the stability of 10 candidate internal control genes(ICGs),namely GAPDH,ACTB,RPL23,RPS15A,ATPSF1,GLUT5,HMBS,ATP2B4,PPIA,and BRP to normalize the transcriptional data from testes samples of Zebu and...Objective:To assess the stability of 10 candidate internal control genes(ICGs),namely GAPDH,ACTB,RPL23,RPS15A,ATPSF1,GLUT5,HMBS,ATP2B4,PPIA,and BRP to normalize the transcriptional data from testes samples of Zebu and crossbred bulls.Methods:Total RNA was isolated from testicular tissue of Zebu and crossbred bulls(n=6 each)between 2-8 years of age.cDNA was synthesized,and the quantitative real-time polymerase chain reaction(PCR)was performed.The cycle threshold values were used for the analysis of the stability of ICGs.Four different statistical algorithms:geNorm,Normfinder,BestKeeper,and RefFinder,were used to assess the stability of these genes.Results:ATPSF1,HMBS,PPIA,and RPS15A were the most reliable and stable ICGs for Zebu testes,and ATPSF1,RPL23,and PPIA for crossbred testes.Conclusions:A panel of stable ICGs(ATPSF1,HMBS,PPIA,RPS15A for Zebu and ATPSF1,RPL23,and PPIA for crossbred)for normalization of gene expression data in testes samples can be helpful for researchers to conduct functional genomics studies at the testicular level in cattle bulls.展开更多
In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) h...In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been served as an effective tool for this purpose. However, PBNs are difficult to be used in practice when the number of genes is large because of the huge computational cost. In this paper, we propose a simplified multivariate Markov model for approximating a PBN The new model can preserve the strength of PBNs, the ability to capture the inter-dependence of the genes in the network, qnd at the same time reduce the complexity of the network and therefore the computational cost. We then present an optimal control model with hard constraints for the purpose of control/intervention of a genetic regulatory network. Numerical experimental examples based on the yeast data are given to demonstrate the effectiveness of our proposed model and control policy.展开更多
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must ha...Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprog- ramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.展开更多
Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control system...Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control systems for gene expression have been developed and testified in recent years, which can control exogenous genes expression in exact time and certain level by administration of a specific drug or hormone. The successful construction of these systems offers a practicable method to control precise expression of exogenous gene in organisms, and raises the feasibility of wide application of gene therapy.展开更多
The expression of rat Glutathione S-transferase P (GST-P) gene can be induced by many kinds of chemical inducers. We have studied the mechanisms of the expression of GST-P gene induced by 3 kinds of Chemical inducers ...The expression of rat Glutathione S-transferase P (GST-P) gene can be induced by many kinds of chemical inducers. We have studied the mechanisms of the expression of GST-P gene induced by 3 kinds of Chemical inducers using the induction of the gene expression by chemical inducers, transient transfection, reporter gene assays, electrophoretic mobility shift assays (EMSA) and Northern blot analysis. The results indicate that the effects and mechanisms of chemical inducers on the expression of GS7'-Pgene are different. The interaction of AP-1 or other corresponding transcription factors activated by phorbol ester (TPA) or glycidyl methatylate (GMA) and GPEl enhancer element induces the expression of GST-P gene, while some unknown factors activated by H2O2 interact with GPEII enhancer element.展开更多
基金The National High Technology Research&Development Program of China under contract No.2012AA10A411the National Natural Science Foundation of China under contract Nos 41176151 and 41276177
文摘Pyropia haitanensis is an economically important mariculture crop in China and has a high research value for several life phenomena, for example environmental tolerance. To explore the mechanisms underlying these characteristics, gene expression has been investigated at the whole transcriptome level. Gene expression studies using quantitative real-time PCR should start by selecting an appropriate internal control gene; therefore, the absolute expression abundance of six housekeeping genes (18S rRNA (18S), ubiquitin-conju-ating enzyme (UBC), actin (ACT), β-tubulin (TUB), elongation factors 2 (EF2), and glyceraldehyde-3-phos- phate dehydrogenase (GAPDH) examined by the quantitative real-time PCR in samples corresponding to different strains, life-cycle stages and abiotic stress treatments. Their expression stabilities were assessed by the comparative cycle threshold (Ct) method and by two different software packages: geNorm and NormFinder. The most stable housekeeping gene is UBC and the least stable housekeeping is GADPH. Thus, it is proposed that the most appropriate internal control gene for expression analyses in P. haitanensis is UBC. The results pave the way for further gene expression analyses of different aspects of P. haitanensis biology including different strains, life-history stages and abiotic stress responses.
基金the National Natural Science Foundation of China,No.81901257(to YXW)the Natural Science Foundation of Jiangsu Province of China,No.BK20180951(to YXW)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province of China,No.KYCX20_2818(to WL)and Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,to Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education).
文摘There is a lack of systematic research on the expression of internal control genes used for gene expression normalization in real-time reverse transcription polymerase chain reaction in spinal cord injury research.In this study,we used rat models of spinal cord hemisection to analyze the expression stability of 13 commonly applied reference genes:Actb,Ankrd27,CypA,Gapdh,Hprt1,Mrpl10,Pgk1,Rictor,Rn18s,Tbp,Ubc,Ubxn11,and Ywhaz.Our results show that the expression of Ankrd27,Ubc,and Tbp were stable after spinal cord injury,while Actb was the most unstable internal control gene.Ankrd27,Ubc,Tbp,and Actb were consequently used to investigate the effects of internal control genes with differing stabilities on the normalization of target gene expression.Target gene expression levels and changes over time were similar when Ankrd27,Ubc,and Tbp were used as internal controls but different when Actb was used as an internal control.We recommend that Ankrd27,Ubc,and Tbp are used as internal control genes for real-time reverse transcription polymerase chain reaction in spinal cord injury research.This study was approved by the Administration Committee of Experimental Animals,Jiangsu Province,China(approval No.20180304-008)on March 4,2018.
文摘AIM: To investigate if sleep deprivation is able to increase the expression of inducible heat shock protein 70 in gastric mucosa and its possible role in mucosal defense. METHODS: Rats for sleep disruption were placed inside a computerized rotating drum, gastric mucosa was taken from rats with 1, 3 and 7d sleep deprivation. RT-PCR, immunohistochemistry and Western blotting were used to determine the expression of heat shock protein 70. Ethanol (500mL.L(-1), i.g.) was used to induce gastric mucosa damage. RESULTS: RT-PCR, Western blotting and immunostaining confirmed that the sleep deprivation as a stress resulted in significantly greater expression of inducible heat shock protein 70 in gastric mucosa of rats. After the 500mL.L(-1) ethanol challenge, the ulcer area found in the rats with 7d sleep deprivation (19.15 +/- 4.2)mm(2) was significantly lower (P【0.01) than the corresponding control (53.7 +/- 8.1) mm(2). CONCLUSION: Sleep deprivation as a stress, in addition to lowering the gastric mucosal barrier, is able to stimulate the expression of inducible heat shock protein 70 in gastric mucosa of rats, the heat shock protein 70 may play an important role in gastric mucosal protection.
基金Supported by the National Natural Science Foundation of China(No.41176113)the National Basic Research Program of China(973 Program)(No.2010CB126403)+1 种基金the Changjiang Scholars Program for Innovative Research Team in Universities(No.IRT0941)the Earmarked Fund for Modern Agro-Industry Technology Research System(No.nycytx-47)
文摘Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 (ACT-2), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), β-tubulin (β-TUB), and 18 S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene (Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ andβ-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further fimetional genomics studies in this economically valuable marine bivalve.
文摘Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively little is known about regulation of expression for these splicing factor proteins. One of these proteins is the evolutionarily-conserved Drosophila RNP-4F splicing assembly factor. This protein is transcribed from a single gene into two developmentally regulated mRNAs that differ in their 5’-UTR structure. In the longer isoform, known to be abundant in the developing fly central nervous system, a conserved retained intron which folds into a stem-loop has been implicated in expression control of the mRNA. Here, we describe construction and utilization of several new rnp-4f gene expression study vectors using a GFP reporter in the ΦC31 system. The results confirm our previous observation that presence of the regulatory stem-loop enhances RNP-4F protein expression. However, in that study, the enhancement factor protein was not identified. We show here that overexpression of the RNP-4F transgene compared to the control results in additional translation, as indicated by the GFP reporter in the fluorescent images. These results are interpreted to show that RNP-4F protein acts back on its own mRNA 5’-UTR regulatory region via a feedback pathway to enhance protein synthesis in the developing fly central nervous system. A model is proposed to explain the molecular mechanism behind rnp-4f gene expression control.
基金The present study was carried out under the project“Molecular markers for improving reproduction in cattle and buffaloes”under the funding of Bill and Melinda Gates Foundation,USA and Indian Council of Agricultural Research-National Dairy Research Institute.
文摘Objective:To assess the stability of 10 candidate internal control genes(ICGs),namely GAPDH,ACTB,RPL23,RPS15A,ATPSF1,GLUT5,HMBS,ATP2B4,PPIA,and BRP to normalize the transcriptional data from testes samples of Zebu and crossbred bulls.Methods:Total RNA was isolated from testicular tissue of Zebu and crossbred bulls(n=6 each)between 2-8 years of age.cDNA was synthesized,and the quantitative real-time polymerase chain reaction(PCR)was performed.The cycle threshold values were used for the analysis of the stability of ICGs.Four different statistical algorithms:geNorm,Normfinder,BestKeeper,and RefFinder,were used to assess the stability of these genes.Results:ATPSF1,HMBS,PPIA,and RPS15A were the most reliable and stable ICGs for Zebu testes,and ATPSF1,RPL23,and PPIA for crossbred testes.Conclusions:A panel of stable ICGs(ATPSF1,HMBS,PPIA,RPS15A for Zebu and ATPSF1,RPL23,and PPIA for crossbred)for normalization of gene expression data in testes samples can be helpful for researchers to conduct functional genomics studies at the testicular level in cattle bulls.
文摘In the post-genomic era, the construction and control of genetic regulatory networks using gene expression data is a hot research topic. Boolean networks (BNs) and its extension Probabilistic Boolean Networks (PBNs) have been served as an effective tool for this purpose. However, PBNs are difficult to be used in practice when the number of genes is large because of the huge computational cost. In this paper, we propose a simplified multivariate Markov model for approximating a PBN The new model can preserve the strength of PBNs, the ability to capture the inter-dependence of the genes in the network, qnd at the same time reduce the complexity of the network and therefore the computational cost. We then present an optimal control model with hard constraints for the purpose of control/intervention of a genetic regulatory network. Numerical experimental examples based on the yeast data are given to demonstrate the effectiveness of our proposed model and control policy.
文摘Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprog- ramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
文摘Along with the increasingly wide application of transgenic techniques, new stricter criteria have been raised for controlling the expression of exogenous genes. For these demands, a series of artificial control systems for gene expression have been developed and testified in recent years, which can control exogenous genes expression in exact time and certain level by administration of a specific drug or hormone. The successful construction of these systems offers a practicable method to control precise expression of exogenous gene in organisms, and raises the feasibility of wide application of gene therapy.
文摘The expression of rat Glutathione S-transferase P (GST-P) gene can be induced by many kinds of chemical inducers. We have studied the mechanisms of the expression of GST-P gene induced by 3 kinds of Chemical inducers using the induction of the gene expression by chemical inducers, transient transfection, reporter gene assays, electrophoretic mobility shift assays (EMSA) and Northern blot analysis. The results indicate that the effects and mechanisms of chemical inducers on the expression of GS7'-Pgene are different. The interaction of AP-1 or other corresponding transcription factors activated by phorbol ester (TPA) or glycidyl methatylate (GMA) and GPEl enhancer element induces the expression of GST-P gene, while some unknown factors activated by H2O2 interact with GPEII enhancer element.