期刊文献+
共找到404篇文章
< 1 2 21 >
每页显示 20 50 100
Influences of burial process on diagenesis and high-quality reservoir development of deep-ultra-deep clastic rocks:A case study of Lower Cretaceous Qingshuihe Formation in southern margin of Junggar Basin,NW China
1
作者 CHEN Sirui XIAN Benzhong +4 位作者 JI Youliang LI Jiaqi TIAN Rongheng WANG Pengyu TANG Heyuan 《Petroleum Exploration and Development》 SCIE 2024年第2期364-379,共16页
Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res... Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution. 展开更多
关键词 deep-ultra-deep layer clastic rock reservoir DIAGENESIS burial process Lower Cretaceous Qingshuihe Formation southern margin of junggar basin
下载PDF
Action mechanisms of abnormal fluid pressure on physical properties of deep reservoirs: A case study on Jurassic Toutunhe Formation in the southern margin of Junggar Basin, NW China
2
作者 GAO Zhiyong CUI Jinggang +3 位作者 FAN Xiaorong FENG Jiarui SHI Yuxin LUO Zhong 《Petroleum Exploration and Development》 SCIE 2023年第6期1398-1410,共13页
Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres... Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs. 展开更多
关键词 abnormally high fluid pressure deep reservoir MICRofRACTURE physical simulation of diagenesis Jurassic Toutunhe Formation southern margin of junggar basin
下载PDF
Simulation for the Controlling Factors of Structural Deformation in the Southern Margin of the Junggar Basin 被引量:3
3
作者 YU Fusheng LI Xiaojian +2 位作者 LI Dinghua FENG Zicheng LI Xueliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期842-853,共12页
According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the n... According to the differences of structural deformation characteristics, the southern margin of the Junggar basin can be divided into two segments from east to west. Arcnate thrust-and-fold belts that protrude to the north are developed in the eastern segment. There are three rows of en echelon thrust-and-fold belts in the western segment. Thrust and fold structures of basement-involved styles are developed in the first row, and decollement fold structures are formed from the second row to the third row. In order to study the factors controlling the deformation of structures, sand-box experiments have been devised to simulate the evolution of plane and profile deformation. The planar simulation results indicate that the orthogonal compression coming from Bogeda Mountain and the oblique compression with an angle of 75° between the stress and the boundary originating from North Tianshan were responsible for the deformation differences between the eastern part and the western part. The Miquan-Uriimqi fault in the basement is the pre-existing condition for generating fragments from east to west. The profile simulation results show that the main factors controlling the deformation in the eastern part are related to the decollement of Jurassic coal beds alone, while those controlling the deformation in the western segment are related to both the Jurassic coal beds and the Eogene clay beds. The total amount of shortening from the Yaomoshan anticline to the Gumudi anticline in the eastern part is -19.57 km as estimated from the simulation results, and the shortening rate is about 36.46%; that from the Qingshuihe anticline to the Anjihai anticline in the western part is -22.01 km as estimated by the simulation results, with a shortening rate of about 32.48%. These estimated values obtained from the model results are very close to the values calculated by means of the balanced cross section. 展开更多
关键词 characteristics of deformation thrust-and-fold belt decollement structure controlling factor sand-box simulation southern margin of the junggar basin
下载PDF
Investigation of plateau basin crustal structures and thickening mechanisms in the northeastern margin of the Tibetan plateau 被引量:1
4
作者 Shixu Jia Zhaofan Xu +4 位作者 Zhi Liu Jianshi Zhang Baofeng Liu Jiyan Lin Wenbin Guo 《Earthquake Science》 CSCD 2012年第5期385-397,共13页
This paper uses deep seismic sounding (DSS) data to contrast and analyze the crustal structures of three plateau basins (Songpan-Garze, Qaidam, Longzhong) in the northeastern margin of the Qinghai-Xizang (Tibetan... This paper uses deep seismic sounding (DSS) data to contrast and analyze the crustal structures of three plateau basins (Songpan-Garze, Qaidam, Longzhong) in the northeastern margin of the Qinghai-Xizang (Tibetan) plateau, as well as two stable cratonic basins (Ordos, Sichuan) in its peripheral areas. Plateau basin crustal structures, lithological variations and crustal thickening mechanisms were investigated. The results show that, compared to the peripheral stable cratonic basins, the crystalline crusts of plateau basins in the northeastern margin are up to 10 15 km thicker, and the relative medium velocity difference is about 5% less. The medium velocity change in crustal layers of plateau basin indicates that the upper crust undergoes brittle deformation, whereas the lower crust deforms plastically with low velocity. The middle crust shows a brittle-to-plastic transition zone in this region. Thickening in the lower crust (about 5 10 km), and rheological characteristics that show low- medium velocity (relatively reduced by 7%), suggest that crustal thickening mainly takes place in lower crust in the northeastern margin of the Tibetan plateau. The crust along the northeastern margin shows evidence of wholesale block movement, and crustal shortening and thickening seem to be the main deformation features of this region. The GPS data show that the block motion modes and crustal thickening in the Tibetan plateau is closely related to the peripheral tectonic stress field and motion direction of the Indian plate. The Mani-Yushu- Xianshuihe fold belt along the boundary between the Qiangtang block and the Bayan Har block divides the different plateau thickening tectonic environments into the middle-western plateau, the northeastern margin and the southeastern plateau. 展开更多
关键词 northeastern margin of the Tibetan plateau plateau basin stable cratonic basin deep seismic sounding thickening mechanism
下载PDF
Petroleum exploration of shallow marine deposit Carboniferous volcanic tuff reservoir in the western margin of Junggar Basin 被引量:2
5
作者 Wang Jianyong Wang Xuezhong Ma Liqun 《Engineering Sciences》 EI 2013年第6期13-18,共6页
In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se... In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description. 展开更多
关键词 CARBONIFEROUS volcanic tuff marine deposit shallow the westem margin of junggar basin
下载PDF
Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China 被引量:1
6
作者 DU Jinhu ZHI Dongming +5 位作者 LI Jianzhong YANG Disheng TANG Yong QI Xuefeng XIAO Lixin WEI Lingyun 《Petroleum Exploration and Development》 2019年第2期216-227,共12页
Well Gaotan 1 was tested a high yield oil and gas flow of more than 1 000 m^3 a day in the Cretaceous Qingshuihe Formation,marking a major breakthrough in the lower assemblage of the southern margin of Junggar Basin. ... Well Gaotan 1 was tested a high yield oil and gas flow of more than 1 000 m^3 a day in the Cretaceous Qingshuihe Formation,marking a major breakthrough in the lower assemblage of the southern margin of Junggar Basin. The lower assemblage in the southern margin of the Junggar Basin has favorable geological conditions for forming large Petroleum fields, including:(1) Multiple sets of source rocks, of which the Jurassic and Permian are the main source rocks, with a large source kitchen.(2) Multiple sets of effective reservoirs,namely Cretaceous Qingshuihe Formation, Jurassic Toutunhe Formation and the Khalza Formation etc.(3) Regional thick mudstone caprock of Cretaceous Tugulu Group, generally with abnormally high pressure and good sealing ability.(4) Giant structural traps and litho-stratigraphic traps are developed. The northern slope also has the conditions for large-scale litho-stratigraphic traps.(5) Static elements such as source rocks, reservoirs and caprocks are well matched, and the dynamic evolution is suitable for large oil and gas accumulation. The lower assemblage of the southern margin of the Junggar Basin has three favorable exploration directions, the Sikeshu Sag in the west part, the large structures in the middle and eastern part, and the northern slope. 展开更多
关键词 southern margin of junggar basin WELL Gaotan 1 LOWER ASSEMBLAGE accumulation condition exploration direction
下载PDF
Lithofacies paleogeography restoration and its significance of Jurassic to Lower Cretaceous in southern margin of Junggar Basin,NW China 被引量:1
7
作者 GAO Zhiyong SHI Yuxin +2 位作者 FENG Jiarui ZHOU Chuanmin LUO Zhong 《Petroleum Exploration and Development》 CSCD 2022年第1期78-93,共16页
In view of the difficulties in the study of lithofacies paleogeography and the low reliability of the distribution range of sedimentary sand bodies in the prototype basin caused by less deep drilling, complex seismic ... In view of the difficulties in the study of lithofacies paleogeography and the low reliability of the distribution range of sedimentary sand bodies in the prototype basin caused by less deep drilling, complex seismic imaging and low degree of exploration in the southern margin of Junggar Basin, NW China. A new method based on the source to sink idea was used to restore lithofacies paleogeography and predict glutenite distribution. In the restoration, apatite fission track age was used to define range and uplift time of macro-provenance;the range of provenance area and the migration process of lake shoreline were restored based on the quantitative relationship between gravel diameter and transportation distance, tectonic shortening and other geological parameters;drilling cores and field outcrop sedimentary structures were analyzed, and a series of maps of lithofacies paleogeographic evolution and distribution range of glutenite bodies were compiled. It is concluded that from Early Jurassic to Early Cretaceous, in the southern margin of Junggar Basin, the provenance area gradually expanded from south to north, the lake basin expanded, shrunk and expanded, and the paleoclimate changed from humid to drought to humid. The western section always had proximal fan delta deposits from the southern ancient Tianshan provenance developed, and in the middle and eastern sections, the provenance areas evolved from far source to near source, mainly river-delta, braided delta, fan delta and other sediments developed. The boundary between provenance areas of the western and middle sections is speculated to be Hongche fault zone. In an angle open to the northwest with the current basin edge line, the restored ancient lake shoreline controlled the heterogeneity of reservoirs in the delta plain belt and delta front belt on its both sides. The ancient lake shoreline, current stratigraphic denudation line and current basin margin line limit the types and scope of favorable reservoirs.This understanding provides an important geological basis for oil and gas exploration in the deep lower source-reservoir assemblage at the southern margin of Junggar Basin. 展开更多
关键词 southern margin of junggar basin deep lower assemblage JURASSIC CRETACEOUS PROVENANCE lake shoreline lithofacies paleogeography favorable sandbody distribution
下载PDF
Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China 被引量:3
8
作者 HU Suyun WANG Xiaojun +3 位作者 CAO Zhenglin LI Jianzhong GONG Deyu XU Yang 《Petroleum Exploration and Development》 2020年第2期266-279,共14页
The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and ... The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels. 展开更多
关键词 junggar basin natural gas exploration Carboniferous volcanic rocks southern margin Lower combination Central Depression
下载PDF
Double Difference Location of the Mainshock and Aftershocks of the Hutubi MS6.2 Earthquake That Occurred on December 8,2016
9
作者 Kong Xiangyan Chen Xiangjun 《Earthquake Research in China》 CSCD 2018年第2期227-232,共6页
The mainshock and aftershocks of the Hutubi M_S6.2 earthquake on December 8,2016 were relocated by applying the double difference method, and we relocated 477 earthquakes in the Hutubi region. The earthquake relocatio... The mainshock and aftershocks of the Hutubi M_S6.2 earthquake on December 8,2016 were relocated by applying the double difference method, and we relocated 477 earthquakes in the Hutubi region. The earthquake relocation results show that the aftershocks are distributed in the east-west direction towards the north side of the southern margin of the Junggar Basin fault,and are mainly distributed in the western region of the mainshock. The distance between the mainshock after relocation and the southern margin of the Junggar Basin fault is obviously shortened. Combined with the focal mechanism and the spatial distribution of the mainshock and aftershocks,it is inferred that the southern margin of the Junggar Basin fault is the main seismogenic structure of the Hutubi earthquake. 展开更多
关键词 Hutubi EARTHQUAKE with MS6.2 AFTERSHOCK sequence Double difference LOCATION method Southern margin of the junggar basin fault
下载PDF
新疆克拉玛依乌尔禾张扭性走滑断裂特征及其控藏作用研究 被引量:1
10
作者 孟凡超 白沅可 +1 位作者 祝贺 王胜利 《地质科学》 CAS CSCD 北大核心 2024年第2期300-312,共13页
乌尔禾沥青矿断裂带位于准噶尔盆地西北缘乌夏断裂带乌尔禾鼻隆之上,是一个小型左旋走滑断裂带。断裂带形成后未发生强烈改造,断裂带内发育沥青矿脉,露头地质条件好,且有三维地震覆盖,是研究走滑断裂特征和控藏作用的天然实验室。本文... 乌尔禾沥青矿断裂带位于准噶尔盆地西北缘乌夏断裂带乌尔禾鼻隆之上,是一个小型左旋走滑断裂带。断裂带形成后未发生强烈改造,断裂带内发育沥青矿脉,露头地质条件好,且有三维地震覆盖,是研究走滑断裂特征和控藏作用的天然实验室。本文采用无人机三维立体建模技术,结合野外剖面实测,对乌尔禾沥青矿走滑断裂带野外剖面露头进行定量分析和解剖。结果表明,沥青矿断裂带共发育17条断层,主断层西北侧断层呈雁列状分布,东南侧断层呈马尾状,断裂带纵向呈负花状。研究表明,断层形成于燕山期左旋剪切应力场,受拉张应力影响,整体处于张扭环境,形成张扭性走滑断裂带。断层发育空腔和诱导裂缝,尤其主动盘裂缝更为发育,空腔的开度与油气侵染宽度呈正相关。结合塔里木盆地张扭性走滑断裂与油气藏关系分析,本文认为张扭性走滑断裂是良好的垂向油气运移通道,主动盘具有侧向输导作用,被动盘具有封堵作用,走滑断裂主动盘一侧圈闭是良好的油气聚集区域。 展开更多
关键词 准噶尔盆地西北缘 乌夏断裂带 乌尔禾沥青矿断裂带 左旋张扭性走滑断裂 控藏作用
下载PDF
中国东西部陆相页岩油地质特征差异性分析及其对富集规律影响——以胜利探区为例
11
作者 张奎华 王越 +4 位作者 于洪洲 周健 汪誉新 宋梅远 倪胜利 《油气地质与采收率》 CAS CSCD 北大核心 2024年第4期42-59,共18页
以胜利探区为例,系统对比研究了中国东西部陆相湖盆页岩油地质特征差异性及其对富集规律的影响。济阳坳陷沙四段上亚段—沙三段下亚段在古地貌、古气候、古水体介质等因素共同控制下,富有机质纹层状碳酸盐页岩大规模分布,富有机质黏土... 以胜利探区为例,系统对比研究了中国东西部陆相湖盆页岩油地质特征差异性及其对富集规律的影响。济阳坳陷沙四段上亚段—沙三段下亚段在古地貌、古气候、古水体介质等因素共同控制下,富有机质纹层状碳酸盐页岩大规模分布,富有机质黏土纹层成烃与富碳酸盐纹层成储协同演化为游离烃规模富集提供了有利条件。准噶尔盆地西北缘哈山地区风城组强裂陷作用导致强烈火山活动,在火山喷发物质与古气候共同影响下,富有机质纹层状含碱长英页岩相大规模分布,且成烃成储演化过程中形成较多的长英质矿物,并伴生大量的基质溶蚀孔和晶间孔,为页岩油富集奠定了重要基础。哈山地区在多期逆冲推覆过程中,准原地系统持续生烃、油多气少和相对较好的保存条件以及构造覆压、生烃增压作用产生的异常高压为页岩油高产提供了必要条件。准噶尔盆地东南缘(准东南)芦草沟组在海迹湖咸水环境下,受火山凝灰质与微生物作用影响,形成了富有机质纹层状页岩相夹贫有机质层状白云岩相的主要岩相组合类型。博格达山周缘山前构造带芦草沟组富有机质页岩均进入成熟演化阶段,胜利探区构造相对稳定区具备页岩油勘探前景。 展开更多
关键词 陆相页岩油 页岩岩相 富集规律 济阳坳陷 哈山地区 准东南地区
下载PDF
准噶尔盆地南缘侏罗系八道湾组富藻类体煤系源岩的发现及其沉积背景
12
作者 王俊 何毓新 +3 位作者 刘敏 高遥 魏凌云 孙永革 《地球化学》 CAS CSCD 北大核心 2024年第3期339-350,共12页
通过沉积有机质中生物标志化合物组合分析,并结合荧光显微组分镜检结果,本研究首次在准噶尔盆地南缘建功剖面下侏罗统八道湾组上段识别出一套富藻类有机质输入的煤系沉积。该套煤系源岩主体处于低成熟–成熟早期演化阶段,镜质组反射率为... 通过沉积有机质中生物标志化合物组合分析,并结合荧光显微组分镜检结果,本研究首次在准噶尔盆地南缘建功剖面下侏罗统八道湾组上段识别出一套富藻类有机质输入的煤系沉积。该套煤系源岩主体处于低成熟–成熟早期演化阶段,镜质组反射率为0.5%~0.6%;有机碳(TOC)含量主要介于2.0%~4.0%之间,局部发育碳质泥岩和煤线;生烃潜量(S_(1)+S_(2))值普遍为3.0~5.0 mg/g,碳质泥岩段最高达18.4 mg/g;氢指数(HI)主要为100~150 mg/g,碳质泥岩段达280 mg/g,属于Ⅱ2型有机质。沉积有机质中生物标志化合物组合表现为姥鲛烷优势,中、短链正构烷烃含量较高,C_(27)~C_(29)规则甾烷呈“V”型分布,Ts、C_(29)Ts、C_(30)H藿烷含量较高,C同位素组成较轻。全岩荧光显微镜镜检结果表明,源岩中壳质组主要为孢子体和藻类(屑)体。结合沉积背景综合判断,该套富藻类体煤系沉积形成于水体较深的湖泊沼泽化早期阶段,浮游藻类等低等水生生物对沉积有机质存在显著贡献,有望成为区域潜在的优质烃源岩。 展开更多
关键词 煤系有机质 生物标志化合物 藻类体 八道湾组 湖泊沼泽化 准噶尔盆地南缘
下载PDF
新疆准噶尔盆地西北缘克拉玛依-乌尔禾断裂带推覆体上盘构造样式及影响因素
13
作者 张磊 白雨 +3 位作者 李梦瑶 王涛 马银山 杨亚洲 《地质通报》 CAS CSCD 北大核心 2024年第5期802-811,共10页
准噶尔盆地西北缘克拉玛依-乌尔禾断裂带(克-乌断裂带)及其周缘发现了大量的油气藏,尤其是推覆体上盘伴随着勘探程度及地质认识不断深化,已呈现出“百里油区”的态势。然而,受多期构造活动及断裂带内部复杂的岩性组合影响,石炭系内幕地... 准噶尔盆地西北缘克拉玛依-乌尔禾断裂带(克-乌断裂带)及其周缘发现了大量的油气藏,尤其是推覆体上盘伴随着勘探程度及地质认识不断深化,已呈现出“百里油区”的态势。然而,受多期构造活动及断裂带内部复杂的岩性组合影响,石炭系内幕地层构造样式展现出多种类型及复杂的空间展布样式,因此需要对构造样式及成因进一步探讨。综合地震和钻井资料,结合区域构造格局,梳理了准噶尔盆地西北缘克-乌断裂带上盘构造变形特征与影响因素;根据构造样式与推覆体内的岩性组合类型,将克-乌断裂带推覆体上盘划分出南段、中段和北段3个变形单元;明确了上盘石炭系5期主要构造阶段,分段恢复了推覆体上盘构造演化期次及样式。综合上述研究,认为克-乌断裂带上、下盘原始岩性组合关系是造成上盘石炭系内幕地层原始形变差异的主要因素,上盘石炭系内幕地层岩性组合差异是造成原生构造保存的主要因素。上述因素共同造成了圈闭条件沿克-乌断裂带自南向北变化。该研究为克-乌断裂带上盘油气勘探提供指导,同时也为类似条件地区的油气勘探提供借鉴。 展开更多
关键词 准噶尔盆地 克-乌断裂带 构造样式 构造演化 石炭系 油气勘探
下载PDF
Unconformity structures controlling stratigraphic reservoirs in the north-west margin of Junggar basin, North-west China 被引量:14
14
作者 Kongyou WU Douglas PATON Ming ZHA 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第1期55-64,共10页
Tectonic movements formed several unconfor- mities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weat... Tectonic movements formed several unconfor- mities in the north-west margin of the Junggar basin. Based on data of outcrop, core, and samples, the unconformity is a structural body whose formation associates with weath- ering, leaching, and onlap. At the same time, the structural body may be divided into three layers, including upper layer, mid layer, and lower layer. The upper layer with good primary porosity serves as the hydrocarbon migration system, and also accumulates the hydrocarbon. The mid layer with compactness and ductility can play a role as cap rock, the strength of which increases with depth. The lower layer with good secondary porosity due to weathering and leaching can form the stratigraphic truncation traps. A typical stratigraphie reservoir lying in the unconformity between the Jurassic and Triassic in the north-west margin of the Junggar basin was meticulously analyzed in order to reveal the key controlling factors. The results showed that the hydrocarbon distribution in the stratigraphic onlap reservoirs was controlled by the onlap line, the hydro- carbon distribution in the stratigraphic truncation reser- voirs was confined by the truncation line, and the mid layer acted as the key sealing rock. So a conclusion was drawn that "two lines (onlap line and truncation line) and a body (unconformity structural body)" control the formation and distribution of stratigraphic reservoirs. 展开更多
关键词 unconformity structural body stratigraphicreservoir key controlling factors Jurassic bottom north-west margin of the junggar basin
原文传递
基于离散元数值模拟的构造变形机制分析方法——以准噶尔盆地南缘为例
15
作者 于宝利 刘可禹 +3 位作者 郭泊洋 林煜 陈鹏 庞志超 《石油地球物理勘探》 EI CSCD 北大核心 2024年第5期1080-1098,共19页
受多期构造运动影响,准噶尔盆地南缘前陆冲断褶皱带具横向东西分段、南北分带,纵向构造叠置的变形特征。但该区构造变形机制及样式的不同认识在一定程度上制约了油气勘探的深入。为探究准南缘新生代以来构造变形机制及其变形过程,本文... 受多期构造运动影响,准噶尔盆地南缘前陆冲断褶皱带具横向东西分段、南北分带,纵向构造叠置的变形特征。但该区构造变形机制及样式的不同认识在一定程度上制约了油气勘探的深入。为探究准南缘新生代以来构造变形机制及其变形过程,本文利用高精度地震、钻井和岩石力学等资料,根据实际地质条件,重点考虑滑脱层的数量、强度及厚度变化,结合滑脱层纵向组合、横向分布范围及同沉积作用、先存构造等因素,共设计了10组模型,并采用离散元数值模拟方法开展了对比实验。实验结果表明,滑脱层强度、厚度及其组合主要控制冲断褶皱带构造纵向叠置关系及构造样式,滑脱层分布及同沉积作用主要控制其横向变形范围,先存构造主要影响后期构造的继承性发育。在此基础上,分段开展了多因素组合模拟实验并与实际地震剖面进行对比,重构了准南缘构造变形过程,揭示了新生代以来其构造变形机制,即先存断裂、古凸起、三套不同性质滑脱层纵向叠置关系和同沉积作用共同控制了西段构造的形成与演化,“下强上弱”“下薄上厚”两套纵向叠置滑脱层控制了中段构造的形成与演化,先存断裂及单套较弱滑脱层控制了东段构造的形成与演化。该方法可为类似的复杂构造变形区提供参考。 展开更多
关键词 准噶尔盆地南缘 前陆冲断褶皱带 离散元数值模拟 滑脱层 先存构造 同沉积作用
下载PDF
The U-Pb chronologic evidence and sedimentary responses of Silurian tectonic activities at northeastern margin of Tarim Basin 被引量:7
16
作者 LIU JingYan YANG HaiJun +4 位作者 YANG YongHeng CAI ZhenZhong LIU YongQuan RUI ZhiFeng SU ZhenZhen 《Science China Earth Sciences》 SCIE EI CAS 2012年第9期1445-1460,共16页
U-Pb ages of Devonian detrital zircons from Tabei Uplift have been determined through LA-ICP-MS test technology.The results revealed that most zircon ages concentrate on 460-414 Ma,especially around 436-423 Ma,indicat... U-Pb ages of Devonian detrital zircons from Tabei Uplift have been determined through LA-ICP-MS test technology.The results revealed that most zircon ages concentrate on 460-414 Ma,especially around 436-423 Ma,indicating possible occurrences of strong tectonic events at the northern margin of Tarim Basin during that period.Combined with previous researches on the basin marginal orogenic belts,intense tectonic activities developed at the northeast margin of Tarim Basin and its obvious sedimentary responses in basin during the end of Ordovician to Early-Middle Silurian are discussed.These include(1) several unconformities within the Late Ordovician-Silurian,showing truncation,erosion,and onlap characteristics,which reflected the local uplift formed during the surrounding extrusion process;(2) the Silurian fluvial delta system from northeast to southwest in Keping,Yingmaili,Hade,and Caohu areas,which reflected the partial uplift at the northeast margin and provided clastic supply to basin;and(3) as indicated by heavy mineral analysis,the Silurian sediments came mainly from the recycles of orogenic belts provenance,which indicated the compress tectonic setting.In addition,a wide range of red mudstone layer distribution in the upper part of the Silurian may be closely related to the surrounding tectonic uplift and the rapid decline of sea levels. 展开更多
关键词 detrital zircon U-Pb geochronology tectonic activities SILURIAN northeastern margin of Tarim basin
原文传递
准噶尔盆地东北缘上石炭统巴山组烃源岩沉积环境分析及物源示踪——来自泥岩地球化学的证据 被引量:2
17
作者 蔡倩茹 王金铎 +4 位作者 张关龙 宋智华 王圣柱 熊峥嵘 倪胜利 《石油实验地质》 CAS CSCD 北大核心 2024年第1期146-157,共12页
烃源岩分布规律和生烃潜力是制约准噶尔盆地东北地区油气勘探的关键因素之一,而沉积背景和环境变化是控制烃源岩成因、分布以及有机质类型的主要因素,沉积岩中的主微量元素、稀土元素等在沉积过程中往往受古气候、古水体化学条件、古环... 烃源岩分布规律和生烃潜力是制约准噶尔盆地东北地区油气勘探的关键因素之一,而沉积背景和环境变化是控制烃源岩成因、分布以及有机质类型的主要因素,沉积岩中的主微量元素、稀土元素等在沉积过程中往往受古气候、古水体化学条件、古环境以及古物源的影响。因此,通过对沉积岩中元素分布规律的全面分析,有助于确定沉积环境和演变过程。对准噶尔盆地东北缘富蕴地区上石炭统巴山组暗色泥岩样品的主微量元素、稀土元素进行地球化学特征分析,结合样品的岩石学特征,揭示古沉积环境和物源区构造背景,为烃源岩形成和发育条件提供地质约束。泥岩的化学风化作用指标、元素含量和元素比值的综合分析表明,巴山组沉积期的古气候条件温暖湿润、水体属氧化条件下的半咸水—淡水,且水体较浅、沉积速率相对稳定。主微量元素特征指示母岩类型主要为沉积岩和长英质火山岩,物源来自卡拉麦里岛弧酸性火成岩区的风化产物,反映了后碰撞阶段由挤压向伸展的构造转变。沉积环境和构造背景控制陆源高等植物输入增多,烃源岩有机质丰度中等,具有一定的生烃潜力。 展开更多
关键词 烃源岩 地球化学特征 沉积环境 巴山组 准东北缘
下载PDF
Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China 被引量:6
18
作者 CHEN JianPing DENG ChunPing +7 位作者 WANG XuLong NI YunYan SUN YongGe ZHAO Zhe LIAO JianDe WANG PeiRong ZHANG DiJia LIANG DiGang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期972-991,共20页
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity ... It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area. 展开更多
关键词 Condensate Waxy oil Heavy oil Light hydrocarbons Evaporative fractionation Phase-controlled fractionation Southern margin of junggar basin
原文传递
低程度风化火山岩风化壳结构划分与主控因素——以准噶尔盆地西缘车排子凸起石炭系火山岩为例 被引量:1
19
作者 韩慧妹 孟凡超 +3 位作者 王千军 陈林 张曰静 王林 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第2期1-11,78,共12页
为解决低风化程度的火山岩风化壳结构划分及火山岩油气储层评价与预测的难题,利用研究区28口井岩心、录井测井和地震资料,对车排子凸起石炭系火山岩风化壳的岩石学、矿物学、地球化学、储层物性进行系统研究。结果表明:研究区岩石整体... 为解决低风化程度的火山岩风化壳结构划分及火山岩油气储层评价与预测的难题,利用研究区28口井岩心、录井测井和地震资料,对车排子凸起石炭系火山岩风化壳的岩石学、矿物学、地球化学、储层物性进行系统研究。结果表明:研究区岩石整体风化程度偏低。在此基础上提出一种将风化壳自上而下分为土壤带、水解带、淋滤带、崩解带、蚀变带、母岩带的6层划分方案。利用研究区玄武安山岩的自然电位、自然伽马、声波、电阻率4种测井数据,结合过采样算法的决策树模型对淋滤带、崩解带、蚀变带进行分类判别,准确率达87.8%。综合分析认为:低风化程度火山岩风化壳有效储层厚度、结构带发育程度、横纵向分布等具有非均质性;有利储层发育主要受古地貌和断裂作用的控制,淋滤带、崩解带是主要有利储层发育区,常分布于古地貌的斜坡地带,一般厚度在350 m以内;受断裂作用影响,风化壳有效储层厚度可达450 m。 展开更多
关键词 低风化程度火山岩 火山岩风化壳结构 决策树判别模型 车排子凸起 准噶尔盆地西缘
下载PDF
埋藏过程对深层-超深层碎屑岩成岩作用及优质储层发育的影响——以准噶尔盆地南缘下白垩统清水河组为例 被引量:1
20
作者 陈思芮 鲜本忠 +4 位作者 纪友亮 李嘉奇 田荣恒 王鹏宇 唐禾元 《石油勘探与开发》 EI CAS CSCD 北大核心 2024年第2期323-336,共14页
以准噶尔盆地南缘下白垩统清水河组为例,综合利用岩石薄片、扫描电镜、电子探针、稳定同位素组成及流体包裹体等技术手段,开展前陆盆地埋藏过程对深层—超深层碎屑岩成岩作用及优质储层发育影响的研究。研究表明,清水河组依次经历了“... 以准噶尔盆地南缘下白垩统清水河组为例,综合利用岩石薄片、扫描电镜、电子探针、稳定同位素组成及流体包裹体等技术手段,开展前陆盆地埋藏过程对深层—超深层碎屑岩成岩作用及优质储层发育影响的研究。研究表明,清水河组依次经历了“缓慢浅埋”、“构造抬升”、“渐进深埋”与“快速深埋”4个埋藏阶段。“缓慢浅埋”与“构造抬升”不仅能够缓解储层颗粒间的机械压实作用,还有利于长期保持开放型的成岩体系;既能够促进大气淡水对储层易溶组分的充分溶解,还能够抑制溶蚀产物的沉淀。晚期“快速深埋”过程促成流体超压的发育,一方面有效地抑制压实、胶结作用对原生孔隙的破坏,另一方面也促进储层微裂缝的大量发育,提高了晚期有机酸充注产生的溶蚀效果。基于孔隙度演化史的定量恢复,证实长期“缓慢浅埋”与“构造抬升”过程对深层—超深层优质碎屑岩储层发育的贡献最大,其次为晚期“快速深埋”过程,“渐进深埋”过程则几乎没有贡献。 展开更多
关键词 深层—超深层 碎屑岩储层 成岩作用 埋藏方式 下白垩统清水河组 准噶尔盆地
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部