Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algo...This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.展开更多
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th...Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.展开更多
This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function...This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain mov...In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain moves between the driving sprocket and upper sprocket which are vertically set.There's a special chain element in the locus chain,which drives the reciprocating holster with the main shaft linchpin and slide block.The r reciprocating g holster could only move up and down when the locus chain moves in a circle.In this way the up and down stroke of the sucker rod and the mac hine is realized.The lower end of the reciprocating holster is con-nected with the equilibrium system to make the structure balance.The balancing cylinder is re-placed by the balancing block to make the structure simplified.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),thi...Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.展开更多
The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requireme...The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.展开更多
[Objective] This study aimed to optimize the PCR amplification conditions for random ssDNA pool in SELEX technology. [Method] L16(45) orthogonal experimental design was adopted for optimization of five important fac...[Objective] This study aimed to optimize the PCR amplification conditions for random ssDNA pool in SELEX technology. [Method] L16(45) orthogonal experimental design was adopted for optimization of five important factors affecting PCR reaction system for random single-stranded DNA pool including Mg2+ concentration, dNTP concentration, amount of Taq DNA polymerase, primer concentration and amount of random single-stranded DNA pool at four levels. Meanwhile, the annealing temperature and number of PCR reaction cycles were optimized to establish the optimal reaction system and PCR procedure. [Result] The optimal combination of PCR reaction system for random ssDNA pool was obtained, with a total system volume of 20 μl containing 2.0 μl of 10 × Buffer, 0.5 ng of random ssDNA pool, 2.5 mmol/L Mg2+, 0.25 mmol/L dNTP Mixture, 0.6 μmol/L upstream and downstream primers and 1.5 U of Taq DNA polymerase; the optimal annealing temperature was 68 ℃ and the optimal number of cycles was 12. Under the above conditions, clear and stable bands with high specificity for random ssDNA pool were amplified. [Conclusion] This study laid the foundation for selection of parameters with higher specificity in SELEX technology.展开更多
The current match method of electric powertrain still makes use of longitudinal dynamics, which can’t realize maximum capacity for on-board energy storage unit and can’t reach lowest equivalent fuel consumption as w...The current match method of electric powertrain still makes use of longitudinal dynamics, which can’t realize maximum capacity for on-board energy storage unit and can’t reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can’t reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.展开更多
The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to an...The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump.The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.展开更多
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
文摘This paper presents four different hybrid genetic algorithms for network design problem in closed loop supply chain. They are compared using a complete factorial experiment with two factors, viz. problem size and algorithm. Based on the significance of the factor “algorithm”, the best algorithm is identified using Duncan’s multiple range test. Then it is compared with a mathematical model in terms of total cost. It is found that the best hybrid genetic algorithm identified gives results on par with the mathematical model in statistical terms. So, the best algorithm out of four algorithm proposed in this paper is proved to be superior to all other algorithms for all sizes of problems and its performance is equal to that of the mathematical model for small size and medium size problems.
文摘Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.
文摘This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
文摘In this paper the pumping unit of type QLCJ14-6 is studied.Through the belt driving unit,the mo-tor drives the driving sprocket in which the rotation rate has been reduced by the reduction ge arbox.The locus chain moves between the driving sprocket and upper sprocket which are vertically set.There's a special chain element in the locus chain,which drives the reciprocating holster with the main shaft linchpin and slide block.The r reciprocating g holster could only move up and down when the locus chain moves in a circle.In this way the up and down stroke of the sucker rod and the mac hine is realized.The lower end of the reciprocating holster is con-nected with the equilibrium system to make the structure balance.The balancing cylinder is re-placed by the balancing block to make the structure simplified.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181)。
文摘Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)
文摘The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.
基金Supported by Central University Basic Research Operating Expenses Special Fund(XDJK2011C026)Southwest University Doctoral Fund(09BSR04)~~
文摘[Objective] This study aimed to optimize the PCR amplification conditions for random ssDNA pool in SELEX technology. [Method] L16(45) orthogonal experimental design was adopted for optimization of five important factors affecting PCR reaction system for random single-stranded DNA pool including Mg2+ concentration, dNTP concentration, amount of Taq DNA polymerase, primer concentration and amount of random single-stranded DNA pool at four levels. Meanwhile, the annealing temperature and number of PCR reaction cycles were optimized to establish the optimal reaction system and PCR procedure. [Result] The optimal combination of PCR reaction system for random ssDNA pool was obtained, with a total system volume of 20 μl containing 2.0 μl of 10 × Buffer, 0.5 ng of random ssDNA pool, 2.5 mmol/L Mg2+, 0.25 mmol/L dNTP Mixture, 0.6 μmol/L upstream and downstream primers and 1.5 U of Taq DNA polymerase; the optimal annealing temperature was 68 ℃ and the optimal number of cycles was 12. Under the above conditions, clear and stable bands with high specificity for random ssDNA pool were amplified. [Conclusion] This study laid the foundation for selection of parameters with higher specificity in SELEX technology.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2011CB711200)National Natural Science Foundation of China (Grant No. 51105278)
文摘The current match method of electric powertrain still makes use of longitudinal dynamics, which can’t realize maximum capacity for on-board energy storage unit and can’t reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can’t reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
文摘The structure and operating principle of micro valveless pump were investigated theoretically and experimentally. The mathematical model of pressure and flow rate within the micro nozzle/diffuser was established to analyze the effects of nozzle/diffuser parameters on the output flow rate of the micro valveless pump.The experiments were carried out with different structural parameters, driving frequencies, vibration amplitudes and stiffness of the driving diaphragms. Effects of the structural parameters and driving conditions on the operation performance of the pump are discussed in detail. The work provides useful reference for structure optimization selection of the driving diaphragm of micro valveless pump.