The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite...The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...展开更多
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at...The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.展开更多
In order to test whether the long-term application of calcium superphosphate leads to an increase of the soil rare earth element contents, superphosphate fertilized soils were sampled and compared with superphosphate-...In order to test whether the long-term application of calcium superphosphate leads to an increase of the soil rare earth element contents, superphosphate fertilized soils were sampled and compared with superphosphate-free soils. Spectrophlame inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES) was applied to quantify the rare earth elements (REEs). The total rare earth element contents in calcium superphosphate from Zhijin County, west part of Guizhou Province, China (produced by the sulphuric acid treatment of the apatites) are about 2.54 mg/g. Between 38 and 189 gREEs/hm^2 per year (available for plants, estimated by 2% citric acid) will be introduced into the soil solution when applying 320 kg superphosphate/hm^2 per year. The long-term application of the latter will increase the REE content by about 18% in the soil surface layer in these areas. A statistically significant increase of the content of the rare earths in some cultivated soils should not be neglected.展开更多
Rare earth elements(REEs)are widely applied in high-tech fields.However,their increasing presence in the food chain poses significant risks to human health.At present,little is known about the effects of organic matte...Rare earth elements(REEs)are widely applied in high-tech fields.However,their increasing presence in the food chain poses significant risks to human health.At present,little is known about the effects of organic matter on the distribution of ion-adsorbed REEs in soil aggregates during ecological restoration.Red soil derived from coarse-grained granite in Southern China is both prone to ecosystem degradation from soil erosion and rich in REEs.Understanding the distribution of REEs in soil aggregates undergoing ecological restoration is helpful to formulate effective measures for controlling the environmental migration of REEs.Four sites that had undergone different durations/degrees of ecological restoration were selected in the areas to analyze.REEs concentration of six different aggregates sizes(<0.25,0.25-0.5,0.5-1,1-2,2-5,and>5 mm)were analyzed and the enrichment coefficients were calculated in 4 sample sites of severe-degraded ecosystem in Changting County,Fujian Province,Southern China.The results showed that the total rare earth elements(TREEs)concentration in the aggregates increased from 213 mg kg^(-1) to 528 mg kg^(-1) with the extension of the ecological restoration time.At the initial stages of ecological restoration,there was no significant difference in the TREEs concentration among the six aggregates sizes.However,in the middle and late stages of restoration,the concentration of TREEs increased significantly with the decrease of aggregate size.The concentration of individual REEs showed three changing trends with sizes of aggregates during ecological restoration,respectively:1)no obvious regular change(S1),2)a V-shaped change trend(S2),and 3)increasing concentration with the decrease of aggregate size(S3 and S4).Ce and Eu showed a positive and negative anomaly in the soil aggregates,respectively.Moreover,the light rare earth elements(LREEs)were enriched,while the heavy rare earth elements(HREEs)were depleted during the initial stages,and the HREEs were enriched during the middle and late stages of restoration.The correlation coefficient between organic matter and REEs in aggregates was generally low;however,LREEs showed a stronger correlation with organic matter than that of HREEs during the initial stages of ecological restoration.The correlation between organic matter and HREEs gradually increased and even exceeded that of LREEs with on-going ecological restoration.The distribution of REEs concentration in degraded soil aggregates in Southern China showed obvious variability with the ecological restoration time.展开更多
Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville ...Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.展开更多
Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal varia...Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.展开更多
The adsorption-desorption behavior of the mixed rare earth elements(RE)on the main types of soils of China,kaolinite and synthetic oxides was studied.The isothermal adsorption of RE was fitted to Langmuir.Freundlich a...The adsorption-desorption behavior of the mixed rare earth elements(RE)on the main types of soils of China,kaolinite and synthetic oxides was studied.The isothermal adsorption of RE was fitted to Langmuir.Freundlich and Temkin equations.The main factors determining the RE adsorption capacity of the soils are the type of clay mineral and the content of amorphous iron oxide in the soils.The above two fac- tors and the pH of soil determine the RE adsorption ability of the soils.The soil and synthetic iron,manga- nese oxides strongly adsorb RE specifically.展开更多
A methodology for calculating the thermal conductivity of soils and rocks is developed which takes into account their origin and mineralogical composition.This method utilizes three approaches.One is founded on the st...A methodology for calculating the thermal conductivity of soils and rocks is developed which takes into account their origin and mineralogical composition.This method utilizes three approaches.One is founded on the structural modeling of contact heat interaction between particles and fills and estimates the statistical probability distribution of the particles in the volume of the medium.The second approach analyses perturbation to the temperature field of the matrix medium by ellipsoidal inclusions.The third approach is to find the mean thermal conductivity of the solid skeleton in the universal model at different composition of rock-forming minerals.展开更多
The method of grey interrelation analysis is adopted for the analysis of the relationship between the amount of rare earths applied and the factors of the soil in increasing cotton production in Kazuo County, Liaonin...The method of grey interrelation analysis is adopted for the analysis of the relationship between the amount of rare earths applied and the factors of the soil in increasing cotton production in Kazuo County, Liaoning Province. The results show that there is an intimate relation between the use of the RE and the elements in the soil. The pH value, total K, and total P are the main factors influencing the relation, and the total N, hydrolytable N, organic matter, K2O and P2O5 are the secondary factors. This provides a scientific basis for the use of the RE.展开更多
A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and ge...A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.展开更多
The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiat...The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiation from the sun and energy radioactive isotopes.展开更多
In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In a...In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.展开更多
The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an ener...The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH4,HCN and NH3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth’s life,including:(1)Darwin’s"warm little pond",leading to a"prebiotic soup"for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth’s life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential"cradle"for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life.展开更多
The aim of this study is to contribute to the mastery of the physical characteristics of lateritic soils in order to improve their use for the manufacture of Compressed Stabilized Earth Bricks (CSEB) in the province o...The aim of this study is to contribute to the mastery of the physical characteristics of lateritic soils in order to improve their use for the manufacture of Compressed Stabilized Earth Bricks (CSEB) in the province of North Kivu in the Democratic Republic of Congo (DRC). The study of the physical characteristics of lateritic soils was carried out. Samples were subjected to experimental identification tests on the physical characteristics (water content, density characteristics, particle size distribution and consistency). The results of the laboratory analysis of soil samples show that the water content varies between 5.4% and 36.99%. The density of the solid grains has an arithmetic mean of 2.5 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. The apparent density varies from 0.83 to 1.35 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. As for the dry density, it is in the range of 0.61 to 1.25 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. These relatively low densities indicate that the material studied ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a significant degree of deformability. From the particle size analysis, it appears that the material studied contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> an important fraction of fine particles. According to the consistency study, the soils studied are plastic clay as Ap class according to the Central Laboratory for Roads and Bridges (CLRB) geotechnical classification system. The particle size curves of the studied samples are within the preferential range of good soils for the manufacture of CSEB. The points representing the studied samples are within the preferential plasticity range of good soils for the manufacture of CSEB. From the above parameters, it appears that the studied material is well adapted for the manufacture of the Compressed Stabilized Earth Bricks</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried...By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.展开更多
[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to...[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to provide basis for scientific application of biogas slurry.[Methods]The fields with different years of continuous application of biogas slurry in Dingnan Rare Earth Tailings Ecological Restoration Demonstration Park were selected as the research object,and the differences in soil physical and chemical properties and microbial community structure after application of biogas slurry for different years(0,3 and 5 years)were studied.[Results]The bulk density of soil with continuous application of biogas slurry showed a downward trend,while the maximum water holding capacity,capillary water holding capacity,porosity,aeration,pH,organic matter,nitrogen,phosphorus and potassium,alkali-hydrolyzable nitrogen and available phosphorus showed an upward trend.Moreover,the effects achieved by application for 5 years were better than those by application for 3 years.Continuous application of biogas slurry could significantly improve the activity of soil urease,acid phosphatase,sucrase and cellulase,and it effects increased with the application year increasing.Continuous application of biogas slurry could significantly improve the abundance of dominant bacteria in soil,and with the increase of application years,the abundances of dominant bacteria also increased.[Conclusions]Continuous application of biogas slurry effectively improved soil physical and chemical properties and soil fertility in rare earth tailings areas where Pennisetum×sinese was planted to restore rare earth tailings.This study provides a theoretical support for establishing key ecological restoration technoiques.展开更多
The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great diff...The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great differences in the REE abundances(∑REE) of the SCS polymetallic crusts and nodules; the crusts show the highest ∑REE, whereas the nodules exhibit the lowest ∑REE. The similarity in their NASC-normalized patterns, the enriched light REE(LREE), the markedly positive Ce anomaly(δCe), and the non-or weakly positive Eu anomaly(δEu), suggest that the polymetallic crusts and nodules are of hydrogenetic origin. Moreover, the REE contents and their relevant parameters are quite different among the various layers of the crusts and nodules, which probably results from the different marginal sea environments and mineral assemblages of the samples. The growth profiles of the SCS polymetallic crusts and nodules reveal the tendency ∑REE and δCe to slightly increase from the outer to the inner layers, suggesting that the growth environments of these samples changed smoothly from an oxidizing to a relatively reducing environment; in addition, the crust ST1 may have experienced a regressive event(sea-level change) during its growth, although the REE composition of the seawater remained relatively stable. On the basis of the regional ∑REE distribution in the SCS crusts and nodules,the samples collected near the northern margin were influenced by terrigenous material more strongly compared with the other samples, and the REE contents are relatively low. Therefore, the special geotectonic environment is a significant factor influencing the abundance of elements, including REE and other trace elements. Compared with the oceanic seamount crusts and deep-sea nodules from other oceans,the SCS polymetallic crusts and nodules exhibit special REE compositions and shale-normalized patterns, implying that the samples are of marginal sea-type Fe-Mn sedimentary deposits, which are strongly affected by the epicontinental environment, and that they grew in a more oxidative seawater environment. This analysis indicates that the oxidized seawater environment and the special nano property of their Fe-Mn minerals enrich the REE adsorption.展开更多
The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobili...The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall.The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration.The disturbance of backfill is considered to be related to the wall movement under translation mode.On the basis of disturbed state concept(DSC),a general disturbance function was proposed which ranged from-1 to 1.The disturbance variables could be determined from the measured wall movements.A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived.A calculation method benefited from Rankine's theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode.The predicted results,including the magnitude and distribution of earth pressure,show good agreement with those of the model test and the finite element method.In addition,the disturbance parameter b was also discussed.展开更多
基金supported by INOS, University Malaysian Terengganu
文摘The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...
基金supported by Grant-in-Aid for Scientific Research on Innovative Areas(Grant Nos.26106002 and 26106006)
文摘The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga,with subsequent secondary accretion of bio-elements,such as carbon(C),hydrogen(H),oxygen(O),and nitrogen(N) which peaked at 4.37-4.20 Ga.This two-step formation model of the Earth we refer to as the advent of bio-elements model(ABEL Model) and the event of the advent of bio-elements(water component) as ABEL Bombardment.It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes.On the other hand,Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio.We present our ABEL model to explain this enigma between solid Earth and water,as well as secondary accretion of oxidizing bio-elements,which became a precursor to initiate metabolism to emerge life on a highly reductive planet.If ABEL Bombardment had not occurred,life never would have emerged on the Earth.Therefore,ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet.The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model.ABEL Bombardment is considered to have occurred during 4.37-4.20 Ga,which is the concept to redefine the standard late heavy bombardment and the late veneer models.Also,ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.
文摘In order to test whether the long-term application of calcium superphosphate leads to an increase of the soil rare earth element contents, superphosphate fertilized soils were sampled and compared with superphosphate-free soils. Spectrophlame inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES) was applied to quantify the rare earth elements (REEs). The total rare earth element contents in calcium superphosphate from Zhijin County, west part of Guizhou Province, China (produced by the sulphuric acid treatment of the apatites) are about 2.54 mg/g. Between 38 and 189 gREEs/hm^2 per year (available for plants, estimated by 2% citric acid) will be introduced into the soil solution when applying 320 kg superphosphate/hm^2 per year. The long-term application of the latter will increase the REE content by about 18% in the soil surface layer in these areas. A statistically significant increase of the content of the rare earths in some cultivated soils should not be neglected.
基金This research was supported by the Industry-University Cooperation Project of Fujian Province(2020Y4101)the National Key Research and Development Program of China(2016YFC0502905).
文摘Rare earth elements(REEs)are widely applied in high-tech fields.However,their increasing presence in the food chain poses significant risks to human health.At present,little is known about the effects of organic matter on the distribution of ion-adsorbed REEs in soil aggregates during ecological restoration.Red soil derived from coarse-grained granite in Southern China is both prone to ecosystem degradation from soil erosion and rich in REEs.Understanding the distribution of REEs in soil aggregates undergoing ecological restoration is helpful to formulate effective measures for controlling the environmental migration of REEs.Four sites that had undergone different durations/degrees of ecological restoration were selected in the areas to analyze.REEs concentration of six different aggregates sizes(<0.25,0.25-0.5,0.5-1,1-2,2-5,and>5 mm)were analyzed and the enrichment coefficients were calculated in 4 sample sites of severe-degraded ecosystem in Changting County,Fujian Province,Southern China.The results showed that the total rare earth elements(TREEs)concentration in the aggregates increased from 213 mg kg^(-1) to 528 mg kg^(-1) with the extension of the ecological restoration time.At the initial stages of ecological restoration,there was no significant difference in the TREEs concentration among the six aggregates sizes.However,in the middle and late stages of restoration,the concentration of TREEs increased significantly with the decrease of aggregate size.The concentration of individual REEs showed three changing trends with sizes of aggregates during ecological restoration,respectively:1)no obvious regular change(S1),2)a V-shaped change trend(S2),and 3)increasing concentration with the decrease of aggregate size(S3 and S4).Ce and Eu showed a positive and negative anomaly in the soil aggregates,respectively.Moreover,the light rare earth elements(LREEs)were enriched,while the heavy rare earth elements(HREEs)were depleted during the initial stages,and the HREEs were enriched during the middle and late stages of restoration.The correlation coefficient between organic matter and REEs in aggregates was generally low;however,LREEs showed a stronger correlation with organic matter than that of HREEs during the initial stages of ecological restoration.The correlation between organic matter and HREEs gradually increased and even exceeded that of LREEs with on-going ecological restoration.The distribution of REEs concentration in degraded soil aggregates in Southern China showed obvious variability with the ecological restoration time.
文摘Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.
基金supported by the National Science and Technology Support Plan of China (2015BAD07B02)
文摘Detecting near-surface soil freeze-thaw cycles in high-altitude cold regions is important for understanding the Earth's surface system, but such studies are rare. In this study, we detected the spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River(SRYR) during the period 2002–2011 based on data from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E). Moreover, the trends of onset dates and durations of the soil freeze-thaw cycles under different stages were also analyzed. Results showed that the thresholds of daytime and nighttime brightness temperatures of the freeze-thaw algorithm for the SRYR were 257.59 and 261.28 K, respectively. At the spatial scale, the daily frozen surface(DFS) area and the daily surface freeze-thaw cycle surface(DFTS) area decreased by 0.08% and 0.25%, respectively, and the daily thawed surface(DTS) area increased by 0.36%. At the temporal scale, the dates of the onset of thawing and complete thawing advanced by 3.10(±1.4) and 2.46(±1.4) days, respectively; and the dates of the onset of freezing and complete freezing were delayed by 0.9(±1.4) and 1.6(±1.1) days, respectively. The duration of thawing increased by 0.72(±0.21) day/a and the duration of freezing decreased by 0.52(±0.26) day/a. In conclusion, increases in the annual minimum temperature and winter air temperature are the main factors for the advanced thawing and delayed freezing and for the increase in the duration of thawing and the decrease in the duration of freezing in the SRYR.
文摘The adsorption-desorption behavior of the mixed rare earth elements(RE)on the main types of soils of China,kaolinite and synthetic oxides was studied.The isothermal adsorption of RE was fitted to Langmuir.Freundlich and Temkin equations.The main factors determining the RE adsorption capacity of the soils are the type of clay mineral and the content of amorphous iron oxide in the soils.The above two fac- tors and the pH of soil determine the RE adsorption ability of the soils.The soil and synthetic iron,manga- nese oxides strongly adsorb RE specifically.
文摘A methodology for calculating the thermal conductivity of soils and rocks is developed which takes into account their origin and mineralogical composition.This method utilizes three approaches.One is founded on the structural modeling of contact heat interaction between particles and fills and estimates the statistical probability distribution of the particles in the volume of the medium.The second approach analyses perturbation to the temperature field of the matrix medium by ellipsoidal inclusions.The third approach is to find the mean thermal conductivity of the solid skeleton in the universal model at different composition of rock-forming minerals.
文摘The method of grey interrelation analysis is adopted for the analysis of the relationship between the amount of rare earths applied and the factors of the soil in increasing cotton production in Kazuo County, Liaoning Province. The results show that there is an intimate relation between the use of the RE and the elements in the soil. The pH value, total K, and total P are the main factors influencing the relation, and the total N, hydrolytable N, organic matter, K2O and P2O5 are the secondary factors. This provides a scientific basis for the use of the RE.
文摘A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high averages of Rb (3×10-6–270×10-6; 80.67×10-6), Sr (181×10-6–1610×10-6; 628.17×10-6) and U (0.14×10-6–3.46×10-6; 1.51×10-6), and fairly uniform Co (34×10-6–49×10-6; 36.33×10-6) and Sc (23×10-6–39×10-6; 34.5×10-6), while the diorite samples exhibit higher trace element compositions. The range of REE contents and distinctive chondrite-normalized patterns indicate moderate fractionation with slight positive Eu anomaly in the diorites to very low fractionation with flat patterns and slight positive Eu anomaly in the gabbros. However, the general element systematics of the samples, especially LILE (Ba, Rb, Sr, Cs and Pb), HFSE (Zr, Th, U, Hf, Mo, W, Nb and Sn), relatively immobile elements (Zr, Ni, Cr) and REE, suggests a differentiation model, involving fractional crystallization of olivine and clinopyroxene from a partial melt generated beneath an island arc complex. A possible model for the complex is therefore an island arc setting, the development of which was dominated by calc-alkaline magmatism across the Obudu Plateau.
文摘The authors have proposed a new of magnetic isotope theory of life on Earth. According to this theory the initial impetus for the beginning of the synthesis of organic compounds is the impact of electromagnetic radiation from the sun and energy radioactive isotopes.
基金Supported by National Natural Science Foundation of China(40901136)~~
文摘In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.
基金supported by MEXT KAKENHI:Grant-in-Aid for Scientific Research on Innovative Areas,Grant Numbers26106002,26106004,26106006the Ministry of Education and Science of the Russian Federation,Project No.14.Y26.31.0018
文摘The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH4,HCN and NH3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth’s life,including:(1)Darwin’s"warm little pond",leading to a"prebiotic soup"for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth’s life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential"cradle"for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life.
文摘The aim of this study is to contribute to the mastery of the physical characteristics of lateritic soils in order to improve their use for the manufacture of Compressed Stabilized Earth Bricks (CSEB) in the province of North Kivu in the Democratic Republic of Congo (DRC). The study of the physical characteristics of lateritic soils was carried out. Samples were subjected to experimental identification tests on the physical characteristics (water content, density characteristics, particle size distribution and consistency). The results of the laboratory analysis of soil samples show that the water content varies between 5.4% and 36.99%. The density of the solid grains has an arithmetic mean of 2.5 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. The apparent density varies from 0.83 to 1.35 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. As for the dry density, it is in the range of 0.61 to 1.25 g/cm</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">. These relatively low densities indicate that the material studied ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a significant degree of deformability. From the particle size analysis, it appears that the material studied contain</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> an important fraction of fine particles. According to the consistency study, the soils studied are plastic clay as Ap class according to the Central Laboratory for Roads and Bridges (CLRB) geotechnical classification system. The particle size curves of the studied samples are within the preferential range of good soils for the manufacture of CSEB. The points representing the studied samples are within the preferential plasticity range of good soils for the manufacture of CSEB. From the above parameters, it appears that the studied material is well adapted for the manufacture of the Compressed Stabilized Earth Bricks</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金Foundation: National Natural Science Foundation of China, No.40672108 Project of State Key Laboratory of Loess and Quaternary Geology, CAS, No.SKLLQG0606
文摘By determining the earth moisture content of artificial forestland between 0 and 6 m deep in the Loess Plateau of Shaanxi province, the vertical change of moisture content, distribution and formation causes of a dried earth layer are researched. The results show that the average moisture content is 9.3%-9.5% between 2 and 4 m under artificial forest of over 10 year's growth in Guanzhong Plain, and chronic weak dried earth layers are developed which show that the dried earth layers are distributed extensively on the Loess Plateau. The southern boundary of the dried earth layer has reached the northern foot of the Qinling Mountains. When precipitation reaches 600 mm, there are weak dried earth layers between 2 and 4 m under artificial forest of more than 10 years old. When the precipitation is between 400 and 500 mm, there are moderate dried earth layers. When precipitation is above 800 mm, there are no dried earth layers. There are no dried earth layers under meadow land, corn land and less than 5 years old of artificial forestland in central and southern parts of the Loess Plateau. The development of dried earth layers under cypress forest is weaker than broad-leaved forest. Under the same climatic conditions, the development of dried earth layers under the loess tableland is nearly at the same level as the 2nd and 3rd river terrace. Dried earth layers developed in membrane water zone, and the buried depth is small and motion velocity is slow in the Loess Plateau, which is the direct water factor of the formation of the dried earth layer, while differences of tree age and tree species are the plant factors that consumed much moisture. From the depth of the gravity water and the membrane water in Guanzhong Plain, it is clear that the formation cause of dried earth layers is mainly due to natural factors. The dried layers generally develop in middle-aged artificial forestland that consumed too much moisture, which is the general character of earth moisture in subhumid and semiarid zones. The appearance of dried layers doesn't show that the forest doesn't develop in this area; this is depended on their development intensity. Artificial forest of Chinese poplar, locust tree and Chinese scholartree consuming less water can be planted in the areas where dried earth layer developed weakly, but can not be planted in the areas where dried earth layer developed intensely.
文摘[Objectives]This study was conducted to analyze the effects of continuous application of biogas slurry for many years on soil ecosystem restoration of rare earth tailings by planting Pennisetum×sinese,in order to provide basis for scientific application of biogas slurry.[Methods]The fields with different years of continuous application of biogas slurry in Dingnan Rare Earth Tailings Ecological Restoration Demonstration Park were selected as the research object,and the differences in soil physical and chemical properties and microbial community structure after application of biogas slurry for different years(0,3 and 5 years)were studied.[Results]The bulk density of soil with continuous application of biogas slurry showed a downward trend,while the maximum water holding capacity,capillary water holding capacity,porosity,aeration,pH,organic matter,nitrogen,phosphorus and potassium,alkali-hydrolyzable nitrogen and available phosphorus showed an upward trend.Moreover,the effects achieved by application for 5 years were better than those by application for 3 years.Continuous application of biogas slurry could significantly improve the activity of soil urease,acid phosphatase,sucrase and cellulase,and it effects increased with the application year increasing.Continuous application of biogas slurry could significantly improve the abundance of dominant bacteria in soil,and with the increase of application years,the abundances of dominant bacteria also increased.[Conclusions]Continuous application of biogas slurry effectively improved soil physical and chemical properties and soil fertility in rare earth tailings areas where Pennisetum×sinese was planted to restore rare earth tailings.This study provides a theoretical support for establishing key ecological restoration technoiques.
基金financially supported by the National12th Five Year Plan Project(No.DY-125-13-R-05)Natural Sciences Foundation of China(No.40343019.40473024)+2 种基金project from the State Key Laboratory for Mineral Deposits Research in Nanjing University(No.20-15-07)the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2011)the Fundamental Research Funds for Central Universities(No.121gjc05,091gpy09)
文摘The rare earth elements(REE) composition of the polymetallic crusts and nodules obtained from the South China Sea(SCS) were analyzed through inductively coupled plasma mass spectrometry.Results revealed great differences in the REE abundances(∑REE) of the SCS polymetallic crusts and nodules; the crusts show the highest ∑REE, whereas the nodules exhibit the lowest ∑REE. The similarity in their NASC-normalized patterns, the enriched light REE(LREE), the markedly positive Ce anomaly(δCe), and the non-or weakly positive Eu anomaly(δEu), suggest that the polymetallic crusts and nodules are of hydrogenetic origin. Moreover, the REE contents and their relevant parameters are quite different among the various layers of the crusts and nodules, which probably results from the different marginal sea environments and mineral assemblages of the samples. The growth profiles of the SCS polymetallic crusts and nodules reveal the tendency ∑REE and δCe to slightly increase from the outer to the inner layers, suggesting that the growth environments of these samples changed smoothly from an oxidizing to a relatively reducing environment; in addition, the crust ST1 may have experienced a regressive event(sea-level change) during its growth, although the REE composition of the seawater remained relatively stable. On the basis of the regional ∑REE distribution in the SCS crusts and nodules,the samples collected near the northern margin were influenced by terrigenous material more strongly compared with the other samples, and the REE contents are relatively low. Therefore, the special geotectonic environment is a significant factor influencing the abundance of elements, including REE and other trace elements. Compared with the oceanic seamount crusts and deep-sea nodules from other oceans,the SCS polymetallic crusts and nodules exhibit special REE compositions and shale-normalized patterns, implying that the samples are of marginal sea-type Fe-Mn sedimentary deposits, which are strongly affected by the epicontinental environment, and that they grew in a more oxidative seawater environment. This analysis indicates that the oxidized seawater environment and the special nano property of their Fe-Mn minerals enrich the REE adsorption.
基金Project(50678158) supported by the National Natural Science Foundation of China
文摘The theoretical formulations of Coulomb and Rankine still remain as the fundamental approaches to the analysis of most gravity-type retaining wall,with the assumption that sufficient lateral yield will occur to mobilize fully limited conditions behind the wall.The effects of the magnitude of wall movements and different wall-movement modes are not taken into consideration.The disturbance of backfill is considered to be related to the wall movement under translation mode.On the basis of disturbed state concept(DSC),a general disturbance function was proposed which ranged from-1 to 1.The disturbance variables could be determined from the measured wall movements.A novel approach that related to disturbed degree and the mobilized internal frictional angle of the backfill was also derived.A calculation method benefited from Rankine's theory and the proposed approach was established to predict the magnitude and distribution of earth pressure from the cohesionless backfill under translation mode.The predicted results,including the magnitude and distribution of earth pressure,show good agreement with those of the model test and the finite element method.In addition,the disturbance parameter b was also discussed.