The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the ...Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.展开更多
This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers ...This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.展开更多
To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of ...To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.展开更多
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng...Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.展开更多
The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law harde...The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.展开更多
Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showe...Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
The current practice of geotechnical engineering commonly uses a combination of theoretical and empirical correlations to estimate the soil undrained shear strength in clays from the piezocone test. In order to comple...The current practice of geotechnical engineering commonly uses a combination of theoretical and empirical correlations to estimate the soil undrained shear strength in clays from the piezocone test. In order to complement the use of such correlations, the application of a method to estimate the soil undrained shear strength, using measures of the excess pore pressure in dissipation tests of piezocone is presented. In cohesive soils, excess pore pressure and undrained shear strength are dependent on the same variables (stress state, stress history, soil stiffness), which allows them to be related by the theoretical cavity expansion-critical state framework. This paper mentions the mathematical formulation that supports the theoretical framework used, its relationship with the Nkt and NΔu factors and their estimation in a case studied. The results obtained are consistent within the dispersion found in the international literature and encourage the use of the method in engineering practice.展开更多
The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio o...The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio of coal was proposed. There is an optimal inert holding ratio for different ranks of coals for making coke with highest combined strength. The additive property of inert holding ratio under normal conditions was demonstrated with actual examples of coal blending.Thus it is possible to predict the combined strength of coke through reflectance, content of inert components and caking index diagram system.展开更多
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
ABSTRACT: China began to introduce market principles and establish price mechanism to better manage land and improve land use efficiency in the late 1980s. Since then, land markets begin to emerge. A benchmark land pr...ABSTRACT: China began to introduce market principles and establish price mechanism to better manage land and improve land use efficiency in the late 1980s. Since then, land markets begin to emerge. A benchmark land price system, providing guidelines for land use rights selling and transferring, was established in order to overcome lack of market data and experiences in land transaction. The benchmark prices of land use rights are determined by land use, land use density (floor-land ratio), land grades, land improvement, and tenant resettlement costs. This paper first conducts a formal analysis based on modern urban economic theory. The formal model provides a theoretical foundation in which the benchmark land price system is assessed and evaluated in terms of land use and urban development. The paper then concludes that the benchmark price system has two theoretical problems. One is associated with the fact that floor-land ratio plays an important role in land price determination whereas the theory suggests the other way around. That is, floor-land ratio depends on land prices. The other problem is that the benchmark land price system does not provide adequate room for the substitution between land and capital inputs. The substitution is a key in achieving land use efficiency in land markets and urban development process. It is concluded that the practice of the benchmark land price system is at odd with reforms that aim to introduce market principles and mechanism to guide resource uses. Therefore, it is recommended that further land policy reform should be taken.展开更多
This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triax...This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive leve...AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching(control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before(pre) and after(post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension.RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups(P > 0.05). Subsequently, although the control group did notexhibit significant changes in quadriceps and hamstring muscle strength(P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension(P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention(P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.展开更多
In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th ...In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.展开更多
Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement co...Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.展开更多
A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uni...A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^(-5), 10^(-4) and 10^(-3)/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.展开更多
The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI...The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI)on its mechanical performances.This research shows that,after optimization,the concrete has a compressive strength of 20.8 MPa,a flexural strength of 3.4 MPa,and a compressive modulus of elasticity of 19.2 GPa.The main factor influencing 28 and 90 d compressive strength is fly ash content,water-binder ratio,and early strength agent content.展开更多
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.
文摘This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.
文摘To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.
文摘Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.
基金Project(N110607002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51074052)supported by the National Natural Science Foundation of China
文摘The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.
基金sponsored by Coal and Energy Research Bureau and CDC-NIOSH under Grant No.R01OH009532
文摘Bumps in coal mines have been recognized as a major hazard for many years. These sudden and violent failures around mine openings have compromised safety, ventilation and access to mine workings.Previous studies showed that the violence of coal specimen failure depends on both the interface friction and width-to-height(W/H) ratio of coal specimen. The mode of failure for a uniaxially loaded coal specimen or a coal pillar is a combination of both shear failure along the interface and compressive failure in the coal. The shear failure along the interface triggered the compressive failure in coal. The compressive failure of a coal specimen or a coal pillar can be controlled by changing its W/H ratio. As the W/H ratio increases, the ultimate strength increases. Hence, with a proper combination of interface friction and the W/H ratio of pillar or coal specimen, the mode of failure will change from sudden violent failure which is brittle failure to non-violent failure which is ductile failure. The main objective of this paper is to determine at what W/H ratio and interface friction the mode of failure changes from violent to non-violent. In this research, coal specimens of W/H ratio ranging from 1 to 10 were uniaxially tested under two interface frictions of 0.1 and 0.25, and the results are presented and discussed.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
文摘The current practice of geotechnical engineering commonly uses a combination of theoretical and empirical correlations to estimate the soil undrained shear strength in clays from the piezocone test. In order to complement the use of such correlations, the application of a method to estimate the soil undrained shear strength, using measures of the excess pore pressure in dissipation tests of piezocone is presented. In cohesive soils, excess pore pressure and undrained shear strength are dependent on the same variables (stress state, stress history, soil stiffness), which allows them to be related by the theoretical cavity expansion-critical state framework. This paper mentions the mathematical formulation that supports the theoretical framework used, its relationship with the Nkt and NΔu factors and their estimation in a case studied. The results obtained are consistent within the dispersion found in the international literature and encourage the use of the method in engineering practice.
文摘The variation regularity of coke strength was investigated in terms of the genetic factors and petrographic parameters of coal in collaboration with the technical properties of coal. A concept of inert holding ratio of coal was proposed. There is an optimal inert holding ratio for different ranks of coals for making coke with highest combined strength. The additive property of inert holding ratio under normal conditions was demonstrated with actual examples of coal blending.Thus it is possible to predict the combined strength of coke through reflectance, content of inert components and caking index diagram system.
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.
文摘ABSTRACT: China began to introduce market principles and establish price mechanism to better manage land and improve land use efficiency in the late 1980s. Since then, land markets begin to emerge. A benchmark land price system, providing guidelines for land use rights selling and transferring, was established in order to overcome lack of market data and experiences in land transaction. The benchmark prices of land use rights are determined by land use, land use density (floor-land ratio), land grades, land improvement, and tenant resettlement costs. This paper first conducts a formal analysis based on modern urban economic theory. The formal model provides a theoretical foundation in which the benchmark land price system is assessed and evaluated in terms of land use and urban development. The paper then concludes that the benchmark price system has two theoretical problems. One is associated with the fact that floor-land ratio plays an important role in land price determination whereas the theory suggests the other way around. That is, floor-land ratio depends on land prices. The other problem is that the benchmark land price system does not provide adequate room for the substitution between land and capital inputs. The substitution is a key in achieving land use efficiency in land markets and urban development process. It is concluded that the practice of the benchmark land price system is at odd with reforms that aim to introduce market principles and mechanism to guide resource uses. Therefore, it is recommended that further land policy reform should be taken.
基金The financial assistance by China Scholarship Council (Grant No. 2011671035)the National Basic Research Program of China (973 Program) (Grant No. 2013CB733201)+3 种基金Key Program of Chinese Academy of Sciences (Grant No. KZZDEW-05-01)One-Hundred Talents Program of Chinese Academy of Sciences (SU Li-jun)CAS "Light of West China" Program (Grant No. Y6R2250250)Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
文摘AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps(H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching(control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before(pre) and after(post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension.RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups(P > 0.05). Subsequently, although the control group did notexhibit significant changes in quadriceps and hamstring muscle strength(P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds(P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension(P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention(P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
文摘In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.
基金National Natural Science Foundation of China(5210090341)Natural Science Foundation of Henan Province(202300410270)Fund of Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power,China(Grading No.YK-2021-39).
文摘Based on the high sulfur content in titanium gypsum,the concept of the calcium-silicon-sulfur(Ca/Si/S)ratio was proposed.The Ca/Si/S ratio of concrete was adjusted by changing the titanium gypsum,fly ash,and cement con-tent.The effects of different Ca/Si/S ratios on the mechanical properties,hydration products,and concrete micro-structure were investigated by nuclear magnetic resonance,uniaxial compression,and scanning electron microscopy.The result shows:(1)The compressive strength of concrete mixed with titanium gypsum increases first and then decreases with the Ca/Si/S ratio decrease.When the Ca/Si/S ratio is 1:0.85:0.10,the strength reaches the peak and is lower than the blank group.(2)The microstructure indicates the addition of titanium gypsum can effectively stimulate the activity of fly ash.Still,too much or too little titanium gypsum will hamper concrete strength development.(3)Titanium gypsum concrete’s nuclear magnetic resonance T2 spectrum has two characteristic peaks.With the Ca/Si/S ratio decreasing,the micropores in the concrete expand towards the macropores.The compressive strength is negatively correlated with the proportion of macropores and is positively correlated with the proportion of no-capillary pores.
基金Project(Z110510) supported by Opening Research Foundation of the Chinese Academy of Sciences Key Laboratory of Rock and Soil MechanicsProject(20060390473) supported by China Postdoctoral Science FoudationProject(40172084) supported by the National Natural Science Foundation of China
文摘A laboratory experimental program performed on Wuhan sandstones was presented under monotonic loading, partial cyclic loading during loading path and sine wave cyclic loading with different strain rates to compare uniaxial compression strength and elastic properties (elastic modulus and Poisson ratio) under different conditions and influence of pore fluid on them. When the loading strain rates are 10^(-5), 10^(-4) and 10^(-3)/s, uniaxial compression strengths of dry sandstones are 82.3, 126.6 and 141.6 MPa, respectively, and that of water saturated sandstones are 70.5, 108.3 and 124.1 MPa, respectively. The above results show that the uniaxial compression strength increases with the increase of strain rate, however, variation of softening coefficient is insignificant. Under monotonic loading condition, tangent modulus increases with an increment of stress (strain) to a maximum value at a certain stress level, beyond which it starts to decline. Under the partial cyclic loading during loading path condition, unloading or reloading modulus is larger than loading modulus, and unloading and reloading moduli are almost constants with respect to stress level, especially unloading modulus. Under the sine wave cyclic loading condition, tangent modulus and Poisson ratio display asymmetric 'X' shape with various strain, and the average unloading modulus is larger than the average loading modulus.
基金The Second Batch of Industry-University Cooperative Education Projects in 2021(202102113047)Science and Technology Project of Hubei Construction Department[2019(672)].
文摘The properties of polyurethane concrete containing a large amount of fly ash are investigated,and accordingly,a model is introduced to account for the influence of fly ash fineness,water ratio,and loss of ignition(LOI)on its mechanical performances.This research shows that,after optimization,the concrete has a compressive strength of 20.8 MPa,a flexural strength of 3.4 MPa,and a compressive modulus of elasticity of 19.2 GPa.The main factor influencing 28 and 90 d compressive strength is fly ash content,water-binder ratio,and early strength agent content.