Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianc...Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm^2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.展开更多
Phosphorus and nitrogen are essential nutrients for living organisms. Their concentration in the water of an aquatic ecosystem is one of the factors responsible for the trophic status of the lake and is related to the...Phosphorus and nitrogen are essential nutrients for living organisms. Their concentration in the water of an aquatic ecosystem is one of the factors responsible for the trophic status of the lake and is related to the soils of the region and to the human activities carried out in their basins. These nutrients are also found in the bottom sediments, where they can either be retained or re-enter the water column. Since the information about the concentrations of nutrients in the water of some lakes of La Pampa (Argentina) is fragmentary, the aim of this study is to describe the trophic status of some shallow lakes of the semiarid center of Argentina and analyze its relation with the human activities in their basins, the concentrations of nutrients and organic matter and particle size distribution of sediments. To this end, we studied ten shallow lakes subjected to different anthropogenic influences (agriculture, agriculture and livestock and impacted by cities). All were hypertrophic and the concentrations of total phosphorus and total nitrogen were among the highest reported globally. Since some lakes had no fish, cladoceran grazing (top-down effect) led them have reduced concentrations of phytoplankton chlorophyll-a and high water transparency. This relativizes the use of these parameters to determine the trophic status. The sediments of seven of the studied lakes were predominated by fine sands, whereas three were predominated by silts. Nutrient and organic matter content were high, with higher concentrations in lakes with prevalence of fine particles. The reduced adsorption capacity of sediments, the resuspension by wind, the anthropogenic input and the accumulation favored by the arheic character of the basins would explain the high concentrations of nutrients in the water of these Pampean environments.展开更多
The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under...The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under simulated mesocosm condition. Chemical administration (@ 30 mg/dm3) resulted in phosphate precipitation from water column concomitant with inactivation in sediments, under specific pH range and/or redox regime. The alum-lime combination dosing wrought the maximum reduction in orthophosphate (65.6%) and soluble reactive phosphate (71.9%) in water plus the utmost increment in sediment-P (0.257 ppm). The inactivated P forms typically exhibited a downhill concentration gradient with highest sequestration in the uppermost sediment stratum. Ironbound P displayed the highest mobility while calcium- and aluminum- bound P behaved almost immune to internal feedback dynamics. The combo-treatment was established as the most effective phosphate scavenging and confiscating agent, to be adopted as chemical remediation regime for de-eutrophication, restoration and rehabilitation of the water body.展开更多
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang and Lake Lianh...Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme.At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria,thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.展开更多
Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation a...Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show that about 0.44 t·a-1 loading in Lake Taihu mainly comes from phosphorus-releasing action of SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution mainly from biological mineralizing and decaying was about 425.8 t·a-1, which is equal to 15.0% of the total external loading of Lake Taihu, namely 4.7—7.5 times as much as SRP loading en-tering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.展开更多
Influence of wave on sediment resuspension and nutrients release from sediments, collected from Lake Taihu and Lake Chaohu, was studied in flume experiments. Under strong-wave conditions, concentrations of suspended s...Influence of wave on sediment resuspension and nutrients release from sediments, collected from Lake Taihu and Lake Chaohu, was studied in flume experiments. Under strong-wave conditions, concentrations of suspended solids (SS), total phosphorus (TP) and dissolved total phosphorus (DTP) in overlying water were increased significantly following the sediments re-suspension. During the experiments on sediments of Lake Taihu and Lake Chaohu, TP concentrations increased 6 times and 3 times, and DTP concentration increased 100% and 70% more than it in presuspension, respectively. Concentration of soluble reactive phosphorus (SRP) of experiment on sediment of Lake Taihu increased 25%. During the massive sediment suspension, the dissolved phosphorus in pore water and much of the phosphorus adsorbed by the sediment particles were released into overlying water. The phenomena in this wave flume experiment are quite similar to the situation observed in situ of Lake Taihu. The critical wave stresses of sediment re-suspension are nearly equal. The change of concentrations of SS, TP, and SRP was the same as that in situ situation.This study showed that concentrations of TP and SRP in lake water could be increased significantly by wave disturbance. Phosphorus release was significantly enhanced by wave disturbance at the beginning of massive sediment re-suspension, but decreased later.展开更多
基金National Natural Science Foundation of China(No.41503075,41673108,and 41571324)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the State Key Laboratory of Lake Science and Environment(No.2016SKL005)China Postdoctoral Science Foundation Funded Project(No.2015M581826)
文摘Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210 Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus(TP) and total nitrogen(TN) were both at high concentrations, ranging from 697.5–3210.0 mg/kg and 1263.7–7155.2 mg/kg, respectively. Inorganic phosphorus(IP) and total organic nitrogen(TON) were the main constituents, at percentages of 59%–78% and 74%–95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm^2·yr) in 2014. As the most reactive forms, nitrate nitrogen(NO_3-N) and ammonia nitrogen(NH_4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71597.6 t and a TN pool of 81191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44468.0 t and 5429.7 t, respectively, for the last century.
文摘Phosphorus and nitrogen are essential nutrients for living organisms. Their concentration in the water of an aquatic ecosystem is one of the factors responsible for the trophic status of the lake and is related to the soils of the region and to the human activities carried out in their basins. These nutrients are also found in the bottom sediments, where they can either be retained or re-enter the water column. Since the information about the concentrations of nutrients in the water of some lakes of La Pampa (Argentina) is fragmentary, the aim of this study is to describe the trophic status of some shallow lakes of the semiarid center of Argentina and analyze its relation with the human activities in their basins, the concentrations of nutrients and organic matter and particle size distribution of sediments. To this end, we studied ten shallow lakes subjected to different anthropogenic influences (agriculture, agriculture and livestock and impacted by cities). All were hypertrophic and the concentrations of total phosphorus and total nitrogen were among the highest reported globally. Since some lakes had no fish, cladoceran grazing (top-down effect) led them have reduced concentrations of phytoplankton chlorophyll-a and high water transparency. This relativizes the use of these parameters to determine the trophic status. The sediments of seven of the studied lakes were predominated by fine sands, whereas three were predominated by silts. Nutrient and organic matter content were high, with higher concentrations in lakes with prevalence of fine particles. The reduced adsorption capacity of sediments, the resuspension by wind, the anthropogenic input and the accumulation favored by the arheic character of the basins would explain the high concentrations of nutrients in the water of these Pampean environments.
文摘The present study investigated potential effectiveness of certain chemical candidates for controlling internal phosphorus loading, and for delineating inactivation pattern in sediment depths of an eutrophic pond under simulated mesocosm condition. Chemical administration (@ 30 mg/dm3) resulted in phosphate precipitation from water column concomitant with inactivation in sediments, under specific pH range and/or redox regime. The alum-lime combination dosing wrought the maximum reduction in orthophosphate (65.6%) and soluble reactive phosphate (71.9%) in water plus the utmost increment in sediment-P (0.257 ppm). The inactivated P forms typically exhibited a downhill concentration gradient with highest sequestration in the uppermost sediment stratum. Ironbound P displayed the highest mobility while calcium- and aluminum- bound P behaved almost immune to internal feedback dynamics. The combo-treatment was established as the most effective phosphate scavenging and confiscating agent, to be adopted as chemical remediation regime for de-eutrophication, restoration and rehabilitation of the water body.
基金supported by the Chinese Academy of Sciences(CAS)(Grant No.KZCX1-SW-12-Ⅱ-02-02)the National Natural Basic Research Program of China(Grant No.2002CB412304)+1 种基金the National Natural Science Foundation of China(Grant No.20177033)the funds(Grant No.2002AA601013).
文摘Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme.At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria,thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.
基金This work was supported by the Chinese Academy of Sciences(Grant No.KZCX1-SW-12-Ⅱ)the National Natural Science Foundation of China(Grant No.40171083) the Chinese Academy of Sciences(Grant No.CXNIGLAS-A02-02).
文摘Through man-made disturbance experiments, the corresponding relationships be-tween suspended particulate matter (SPM) and wind speed in different lake areas were simu-lated, the physicochemical formal transformation and biological mineralizing and decaying processes of phosphorus in SPM were studied, the contribution of phosphorus transformation to phosphorus loading of the water of Lake Taihu was quantitatively estimated. The results show that about 0.44 t·a-1 loading in Lake Taihu mainly comes from phosphorus-releasing action of SPM in physicochemical transformed to soluble reactive phosphorus (SRP), and the contribution mainly from biological mineralizing and decaying was about 425.8 t·a-1, which is equal to 15.0% of the total external loading of Lake Taihu, namely 4.7—7.5 times as much as SRP loading en-tering the lake by the rivers; thus it is the important source in dynamical internal loading of the lake. The determining factors for dynamical internal loading in lakes are organic phosphorus content in suspended solid and its biological transition availability.
基金This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX1-SW-12)the National Natural Science Foundation of China(Grant No.40203007)the Hi-Tech Research and Development Program of China(863 Program)(Grant No.2002AA601011).
文摘Influence of wave on sediment resuspension and nutrients release from sediments, collected from Lake Taihu and Lake Chaohu, was studied in flume experiments. Under strong-wave conditions, concentrations of suspended solids (SS), total phosphorus (TP) and dissolved total phosphorus (DTP) in overlying water were increased significantly following the sediments re-suspension. During the experiments on sediments of Lake Taihu and Lake Chaohu, TP concentrations increased 6 times and 3 times, and DTP concentration increased 100% and 70% more than it in presuspension, respectively. Concentration of soluble reactive phosphorus (SRP) of experiment on sediment of Lake Taihu increased 25%. During the massive sediment suspension, the dissolved phosphorus in pore water and much of the phosphorus adsorbed by the sediment particles were released into overlying water. The phenomena in this wave flume experiment are quite similar to the situation observed in situ of Lake Taihu. The critical wave stresses of sediment re-suspension are nearly equal. The change of concentrations of SS, TP, and SRP was the same as that in situ situation.This study showed that concentrations of TP and SRP in lake water could be increased significantly by wave disturbance. Phosphorus release was significantly enhanced by wave disturbance at the beginning of massive sediment re-suspension, but decreased later.