To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especia...To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.展开更多
The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near ...The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.展开更多
We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers du...We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers during CHINARE 21(2004/2005) and CHINARE 29(2012/2013).The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems,and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level(a.s.l.).Radar profiles indicate an average ice thickness of 1900 m,with a maximum of 1949 m and a minimum of 1856 m,within a square area measuring approximately 2 km × 2 km in the vicinity of the station.The ice thickness beneath the station site is 1870 m.The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l.,revealing part of a mountainous topography.The ice volume in the grid is estimated to be 7.6 km^3.Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site,some disturbed internal layers are identified and traced;the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.展开更多
为提高小目标识别性能,多波束测深仪通常使用短连续脉宽信号(Continuous Wave,CW)进行探测。然而,短脉宽信号携带能量有限,测深最大距离及扫测宽度得不到保证。发射长脉宽线性调频(Linear Frequency Modulation,LFM)信号,结合脉冲压缩...为提高小目标识别性能,多波束测深仪通常使用短连续脉宽信号(Continuous Wave,CW)进行探测。然而,短脉宽信号携带能量有限,测深最大距离及扫测宽度得不到保证。发射长脉宽线性调频(Linear Frequency Modulation,LFM)信号,结合脉冲压缩技术可解决这一矛盾。本文主要介绍LFM信号在国产iBeam8120浅水多波束测深仪中的工程应用情况,重点阐述接收回波信号处理方法,实测数据脉冲压缩效果,并分析了相位差精度影响因素。外场试验数据表明:经脉压处理后,声呐图回波能量更为集中,底检测性能得到改善。展开更多
Chinese radioglaciological studies on the Antarctic ice sheet(AIS) began in 2004/05 when the 21 st Chinese National Antarctic Research Expedition(CHINARE 21) team arrived at Dome A for the first time and radio echo so...Chinese radioglaciological studies on the Antarctic ice sheet(AIS) began in 2004/05 when the 21 st Chinese National Antarctic Research Expedition(CHINARE 21) team arrived at Dome A for the first time and radio echo sounding(RES) was conducted along the inland traverse and in the Dome A region. Subsequently, more field surveys were conducted along the traverse and in the Dome A region using different radar systems targeting different scientific purposes, such as revealing the landscape of the Gamburtsev Subglacial Mountains by detailed grid RES, or locating a deep ice core drilling site by mapping and studying internal structures, bedrock topography and subglacial conditions in the Dome A region. Furthermore, the evolution of the AIS was inferred from the typical mountain glaciation topography beneath Dome A, and the age of the deep ice core at Kunlun Station was estimated through numerical modeling. Recently, the Snow Eagle 601 airplane was acquired and an airborne geophysical system was constructed to survey the AIS in Princess Elizabeth Land during CHINARE 32(2015/16) and CHINARE 33(2016/17) in order to fill the large data gap there. In this paper, we review both the recent progress of Chinese radioglaciological science in Antarctica and future proposed work.展开更多
This paper includes a short historical review of Russian and Soviet scientific traverses to study the Antarctic inland. The first traverse left on April 2, 1956. It resulted in the opening of the first Russian inland ...This paper includes a short historical review of Russian and Soviet scientific traverses to study the Antarctic inland. The first traverse left on April 2, 1956. It resulted in the opening of the first Russian inland research station named Pionerskaya and provided the first geophysical and glaciological data on regions inland of the Antarctic coast. By 1965, a number of regional inland scientific traverses had been completed and. the first Atlas of Antarctica was published in 1966. The atlas presented the main achievements of that time. After the discovery of Lake Vostok, Russian scientists commenced remote sensing investigations to study this unique natural phenomenon. The propagation of acoustic and electromagnetic waves in the glacier near Vostok Station were measured to provide important geophysical data. Radio-echo sounding data showed that Lake Vostok is isolated and separated from the rest of the Antarctic subglacial hydrosphere. The total area of the lake is 15 790 km2, excluding 365 km^2 occupied by 11 islands. Reflection seismic soundings of Lake Vostok estimated a total volume of about 6 100 km^3, an average depth of about 400 m, and a maximum depth of 1 200 m. Since 2008, there have been a number of scientific traverses between Mirny and Vostok stations and between Progress and Vostok stations. The data collected during the traverses have provided new insights into sub-ice topography and ice sheet structure, and have led to the discovery of subglacial lakes near Komsomolskaya Station and under Pionerskaya Station.展开更多
基金funded by the National High Technology Research and Development Program of China('863'Program)under contract Nos.2004AA616080 and 2006AA09ZI03the National Natural Science Foundation of China(Project code:40606026).
文摘To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.
基金the National Natural Science Foundation of China(Grant No.40874060)the 863 projection(Grant No.2006AA09Z152)
文摘The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.
基金financially supported by the National Natural Science Foundation of China(Grant No.41376192,40906101)the National Basic Research Program of China(973 Program)(Grant No.2013CBA01804 and 2012CB957702)+2 种基金the Foreign Cooperation Support Program of Chinese Arctic and Antarctic Administration,SOA,China(Grand No.IC201214)the Natural Science Foundation of Shanghai,China(Grand No.13ZR1445300)the Chinese Polar Environment Comprehensive Investigation&Assessment Programmes(CHINARE2014-01-01)
文摘We present the results of two ground-based radio-echo-sounding(RES) and GPS surveys performed in the vicinity of new Chinese Taishan station,Princess Elizabeth Land,East Antarctica,obtained in two austral summers during CHINARE 21(2004/2005) and CHINARE 29(2012/2013).The radar surveys measured ice thickness and internal layers using 60- and 150-MHz radar systems,and GPS measurements showed smooth surface slopes around the station with altitudes of 2607-2636 m above sea level(a.s.l.).Radar profiles indicate an average ice thickness of 1900 m,with a maximum of 1949 m and a minimum of 1856 m,within a square area measuring approximately 2 km × 2 km in the vicinity of the station.The ice thickness beneath the station site is 1870 m.The subglacial landscape beneath the station is quiet sharp and ranges from 662 to 770 m a.s.l.,revealing part of a mountainous topography.The ice volume in the grid is estimated to be 7.6 km^3.Along a 60-MHz radar profile with a length of 17.6 km at the region covering the station site,some disturbed internal layers are identified and traced;the geometry of internal layers within the englacial stratigraphy may imply a complex depositional process in the area.
文摘为提高小目标识别性能,多波束测深仪通常使用短连续脉宽信号(Continuous Wave,CW)进行探测。然而,短脉宽信号携带能量有限,测深最大距离及扫测宽度得不到保证。发射长脉宽线性调频(Linear Frequency Modulation,LFM)信号,结合脉冲压缩技术可解决这一矛盾。本文主要介绍LFM信号在国产iBeam8120浅水多波束测深仪中的工程应用情况,重点阐述接收回波信号处理方法,实测数据脉冲压缩效果,并分析了相位差精度影响因素。外场试验数据表明:经脉压处理后,声呐图回波能量更为集中,底检测性能得到改善。
基金financially supported by the National Natural Science Foundation of China (Grant nos. 41776186, 41730102 and 41571407)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs (Grant no. CHINARE-02-02)
文摘Chinese radioglaciological studies on the Antarctic ice sheet(AIS) began in 2004/05 when the 21 st Chinese National Antarctic Research Expedition(CHINARE 21) team arrived at Dome A for the first time and radio echo sounding(RES) was conducted along the inland traverse and in the Dome A region. Subsequently, more field surveys were conducted along the traverse and in the Dome A region using different radar systems targeting different scientific purposes, such as revealing the landscape of the Gamburtsev Subglacial Mountains by detailed grid RES, or locating a deep ice core drilling site by mapping and studying internal structures, bedrock topography and subglacial conditions in the Dome A region. Furthermore, the evolution of the AIS was inferred from the typical mountain glaciation topography beneath Dome A, and the age of the deep ice core at Kunlun Station was estimated through numerical modeling. Recently, the Snow Eagle 601 airplane was acquired and an airborne geophysical system was constructed to survey the AIS in Princess Elizabeth Land during CHINARE 32(2015/16) and CHINARE 33(2016/17) in order to fill the large data gap there. In this paper, we review both the recent progress of Chinese radioglaciological science in Antarctica and future proposed work.
基金supported by the Russian Foundation for Basic Research (RFBR), research project No. 14-05-00234-а
文摘This paper includes a short historical review of Russian and Soviet scientific traverses to study the Antarctic inland. The first traverse left on April 2, 1956. It resulted in the opening of the first Russian inland research station named Pionerskaya and provided the first geophysical and glaciological data on regions inland of the Antarctic coast. By 1965, a number of regional inland scientific traverses had been completed and. the first Atlas of Antarctica was published in 1966. The atlas presented the main achievements of that time. After the discovery of Lake Vostok, Russian scientists commenced remote sensing investigations to study this unique natural phenomenon. The propagation of acoustic and electromagnetic waves in the glacier near Vostok Station were measured to provide important geophysical data. Radio-echo sounding data showed that Lake Vostok is isolated and separated from the rest of the Antarctic subglacial hydrosphere. The total area of the lake is 15 790 km2, excluding 365 km^2 occupied by 11 islands. Reflection seismic soundings of Lake Vostok estimated a total volume of about 6 100 km^3, an average depth of about 400 m, and a maximum depth of 1 200 m. Since 2008, there have been a number of scientific traverses between Mirny and Vostok stations and between Progress and Vostok stations. The data collected during the traverses have provided new insights into sub-ice topography and ice sheet structure, and have led to the discovery of subglacial lakes near Komsomolskaya Station and under Pionerskaya Station.