With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow th...With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.展开更多
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin...Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.展开更多
The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination o...The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination of the product and TEAM Problem 21B, the surface impedance method shows its great advantage in the calculation of eddy current loss.展开更多
<div style="text-align:justify;"> The assumption of steady uniform flow permits the computation of the velocity isoline, secondary current and turbulent statistics in open channel flows. However, it be...<div style="text-align:justify;"> The assumption of steady uniform flow permits the computation of the velocity isoline, secondary current and turbulent statistics in open channel flows. However, it becomes important to choose appropriate turbulence models to capture the length scale of turbulence near the interfacial zone of compound channels. This paper not only focusses on capturing the longitudinal vortex and primary mean velocity but also extrapolates the results of numerical analysis to understand the interaction between the main channel and floodplain in asymmetric compound channels. The results of computational fluid dynamics simulation showed that the velocity isoline bulging near the bed of the floodplain and sidewall at the junction, due to high-momentum transport by secondary current, can be captured with Reynolds stress model. Furthermore, by applying the three different cases of channels with varying geometrical aspects, the maximum velocity simulated showed similar results to the experiments where the structure of primary mean velocity is seen to be influenced by momentum transport due to the secondary current. </div>展开更多
Based on the hierarchical equations of motion(HEOM)calculation,we theoretically investigate the corresponding control of a triangular triple-quantum-dots(TTQD)ring which is connected to two reservoirs.We initially dem...Based on the hierarchical equations of motion(HEOM)calculation,we theoretically investigate the corresponding control of a triangular triple-quantum-dots(TTQD)ring which is connected to two reservoirs.We initially demonstrate by adding bias voltage and further adjusting the coupling strength between quantum dots,the chiral current induced by bias will go through a transformation of clockwise to counterclockwise direction and an unprecedented effective Hall angle will be triggered.The transformation is very rapid,with a corresponding characteristic time of 80-200 ps.In addition,by adding a magnetic flux to compensate for the chiral current in the original system,we elucidate the relationship between the applied magnetic flux and the Berry phase,which can realize direct measurement of the chiral current and reveal the magnetoelectric coupling relationship.展开更多
Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level perf...Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level performance. In our previous work, we had proposed margin propagation (MP) as an efficient piece-wise linear (PWL) approximation technique to a log-sum-exp function and had demonstrated its advantages for implementing probabilistic decoders. In this paper, we present a systematic and a generalized approach for synthesizing analog piecewise-linear (PWL) computing circuits using the MP principle. MP circuits use only addition, subtraction and threshold operations and hence can be implemented using universal conservation principles like the Kirchoff's current law. Thus, unlike the conventional translinear CMOS current-mode circuits, the operation of the MP circuits are functionally similar in weak, moderate and strong inversion regimes of the MOS transistor making the design approach bias-scalable. This paper presents measured results from MP circuits prototyped in a 0.5μm standard CMOS process verifying the bias-scalable property. As an example, we apply the synthesis approach towards designing linear classifiers and verify its performance using measured results.展开更多
针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周...针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。展开更多
目的 探讨基于视听觉和运动反馈的脑机接口(BCI)结合经颅直流电刺激(tDCS)对脑卒中患者上肢功能的疗效。方法 2023年3月至10月,徐州医科大学附属徐州康复医院和徐州市中心医院住院的脑卒中患者45例,随机分为BCI组、tDCS组和联合组,每组1...目的 探讨基于视听觉和运动反馈的脑机接口(BCI)结合经颅直流电刺激(tDCS)对脑卒中患者上肢功能的疗效。方法 2023年3月至10月,徐州医科大学附属徐州康复医院和徐州市中心医院住院的脑卒中患者45例,随机分为BCI组、tDCS组和联合组,每组15例。3组均接受常规康复治疗,BCI组增加BCI,tDCS组增加tDCS治疗,联合组先行tDCS治疗,然后立即进行BCI,共4周。治疗前后采用Fugl-Meyer评定量表上肢部分(FMA-UE)、上肢动作研究量表(ARAT)和改良Barthel指数(MBI)进行评定,测量脑电图δ-α比(DAR)和功率比指数(PRI)。结果 治疗后,3组FMA-UE、ARAT和MBI评分均较治疗前显著提高(|t|> 5.350, P <0.001),联合组最优(F>3.366, P <0.05),DAR和PRI均较治疗前显著减小(|t|> 2.208, P <0.05),联合组最优(F> 5.224, P <0.01)。结论 基于视听觉和运动反馈的BCI结合tDCS可进一步改善脑卒中患者上肢运动功能,提高日常生活活动能力。展开更多
A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power ca...A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power cable and outer liquefied natural gas (LNG) pipeline. The flowing LNG could maintain the operating temperature of the inner HTS power cable within the range of 85 K-90 K, thus the Bi-2223 superconductors in the HTS power cable produce little Joule loss with the transmission current below the critical current. Owing to the advantages of high power density, low transmission losses and economical manufacturing costs, the hybrid energy transmission pipeline is expected to be widely utilized in the near future. In order to ensure the safety of the HTS power cable and explosive LNG in case of short-circuit faults, this paper tests and analyzes the characteristics of Bi-2223 HTS tapes of the Type HT-CA, Type HT-SS and Type H models under short-circuit current impacts at the LNG cooling temperature (85 K-90 K). An experimental platform is designed and established for the ampacity tests of HTS tapes above LN2 cooling temperature (77 K). The AC over-current impact tests at 85 K-90 K are carried out on each sample of Bi-2223 tapes respectively, and the experimental results are analyzed and compared to evaluate their performances under different operating conditions. The results indicate that the Type HT-CA tape can withstand 50 Hz short-circuit current impact with the amplitude of 1108 A (10 times of critical current Ic ) for 100 ms at 90 K, and its resistance is the smallest of the three tested samples under similar current impacts. Therefore, the Type HT-CA Bi-2223 tape is the optimal superconductor of the HTS power cable in the hybrid energy transmission pipeline.展开更多
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ...Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.展开更多
存内计算(Computing In Memory,CIM)在人工智能神经网络的卷积运算方面具有巨大的应用潜力。基于忆阻器阵列的多位存内计算由于具备写入速度快、与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺兼容等特点,...存内计算(Computing In Memory,CIM)在人工智能神经网络的卷积运算方面具有巨大的应用潜力。基于忆阻器阵列的多位存内计算由于具备写入速度快、与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺兼容等特点,有望成为解决“内存墙”的有效手段。然而,当前多位存内计算电路架构面临输出延时高和能耗大的问题,主要原因为传统感知放大器的性能制约,为此本文提出了一种低延时低能耗多位电流型感知放大器(Low-delay Low-power Multi-bit Current-mode Sense Amplifier,LLM-CSA),通过减少传统CSA电路工作状态数量、简化工作时序来优化功能;采用新型低位检测模块的电路设计思路,来多层次系统性地降低输出延时并优化能耗。使用中芯国际40 nm低漏电逻辑工艺(SMIC40 nm LL),利用Cadence电路设计平台,仿真验证所提LLM-CSA的功能和延时-能耗性能。通过对比分析发现:LLM-CSA比传统CSA输出延时降低1.42倍,能量消耗降低1.56倍。进一步地,以一种4 bit输入、4 bit权重、11 bit输出的忆阻器阵列多位存内计算架构为应用,对比验证所提LLM-CSA的性能:与基于传统CSA的存内计算系统相比,新架构延时降低1.18倍,能耗降低1.03倍。LLM-CSA的提出对促进感知放大器设计思路和忆阻器阵列存内计算架构的发展,具有一定的理论和现实意义。展开更多
文摘With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.
基金The National Basic Research Program(973 Program)under contract No.2014CB046803the National Natural Science Foundation of China under contract No.51239008the National Science and Technology Major Project under contract No.2016ZX05028005-004
文摘Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.
文摘The ?method is used in this paper to calculate the leakage magnetic field of SSZ11-50000/110 Power transformer, and by which the structures’ influences to the main leakage flux are analyzed. Through the combination of the product and TEAM Problem 21B, the surface impedance method shows its great advantage in the calculation of eddy current loss.
文摘<div style="text-align:justify;"> The assumption of steady uniform flow permits the computation of the velocity isoline, secondary current and turbulent statistics in open channel flows. However, it becomes important to choose appropriate turbulence models to capture the length scale of turbulence near the interfacial zone of compound channels. This paper not only focusses on capturing the longitudinal vortex and primary mean velocity but also extrapolates the results of numerical analysis to understand the interaction between the main channel and floodplain in asymmetric compound channels. The results of computational fluid dynamics simulation showed that the velocity isoline bulging near the bed of the floodplain and sidewall at the junction, due to high-momentum transport by secondary current, can be captured with Reynolds stress model. Furthermore, by applying the three different cases of channels with varying geometrical aspects, the maximum velocity simulated showed similar results to the experiments where the structure of primary mean velocity is seen to be influenced by momentum transport due to the secondary current. </div>
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774418,11374363,11674317,11974348,11834014,and 21373191)the Strategic Priority Research Program of CAS(Grant Nos.XDB28000000 and XDB33000000)the Training Program of Major Research Plan of NSFC(Grant No.92165105)。
文摘Based on the hierarchical equations of motion(HEOM)calculation,we theoretically investigate the corresponding control of a triangular triple-quantum-dots(TTQD)ring which is connected to two reservoirs.We initially demonstrate by adding bias voltage and further adjusting the coupling strength between quantum dots,the chiral current induced by bias will go through a transformation of clockwise to counterclockwise direction and an unprecedented effective Hall angle will be triggered.The transformation is very rapid,with a corresponding characteristic time of 80-200 ps.In addition,by adding a magnetic flux to compensate for the chiral current in the original system,we elucidate the relationship between the applied magnetic flux and the Berry phase,which can realize direct measurement of the chiral current and reveal the magnetoelectric coupling relationship.
基金Supported by a Research Grant from The National Science Foundation(CCF:0728996)
文摘Approximation techniques are useful for implementing pattern recognizers, communication decoders and sensory processing algorithms where computational precision is not critical to achieve the desired system level performance. In our previous work, we had proposed margin propagation (MP) as an efficient piece-wise linear (PWL) approximation technique to a log-sum-exp function and had demonstrated its advantages for implementing probabilistic decoders. In this paper, we present a systematic and a generalized approach for synthesizing analog piecewise-linear (PWL) computing circuits using the MP principle. MP circuits use only addition, subtraction and threshold operations and hence can be implemented using universal conservation principles like the Kirchoff's current law. Thus, unlike the conventional translinear CMOS current-mode circuits, the operation of the MP circuits are functionally similar in weak, moderate and strong inversion regimes of the MOS transistor making the design approach bias-scalable. This paper presents measured results from MP circuits prototyped in a 0.5μm standard CMOS process verifying the bias-scalable property. As an example, we apply the synthesis approach towards designing linear classifiers and verify its performance using measured results.
文摘针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。
文摘目的 探讨基于视听觉和运动反馈的脑机接口(BCI)结合经颅直流电刺激(tDCS)对脑卒中患者上肢功能的疗效。方法 2023年3月至10月,徐州医科大学附属徐州康复医院和徐州市中心医院住院的脑卒中患者45例,随机分为BCI组、tDCS组和联合组,每组15例。3组均接受常规康复治疗,BCI组增加BCI,tDCS组增加tDCS治疗,联合组先行tDCS治疗,然后立即进行BCI,共4周。治疗前后采用Fugl-Meyer评定量表上肢部分(FMA-UE)、上肢动作研究量表(ARAT)和改良Barthel指数(MBI)进行评定,测量脑电图δ-α比(DAR)和功率比指数(PRI)。结果 治疗后,3组FMA-UE、ARAT和MBI评分均较治疗前显著提高(|t|> 5.350, P <0.001),联合组最优(F>3.366, P <0.05),DAR和PRI均较治疗前显著减小(|t|> 2.208, P <0.05),联合组最优(F> 5.224, P <0.01)。结论 基于视听觉和运动反馈的BCI结合tDCS可进一步改善脑卒中患者上肢运动功能,提高日常生活活动能力。
基金supported by National Key R&D Project under Grant(2018YFB0904400).
文摘A hybrid energy transmission pipeline is proposed with the aim of long-distance cooperative transmission of electricity and chemical fuels, which is composed of an inner high-temperature superconducting (HTS) power cable and outer liquefied natural gas (LNG) pipeline. The flowing LNG could maintain the operating temperature of the inner HTS power cable within the range of 85 K-90 K, thus the Bi-2223 superconductors in the HTS power cable produce little Joule loss with the transmission current below the critical current. Owing to the advantages of high power density, low transmission losses and economical manufacturing costs, the hybrid energy transmission pipeline is expected to be widely utilized in the near future. In order to ensure the safety of the HTS power cable and explosive LNG in case of short-circuit faults, this paper tests and analyzes the characteristics of Bi-2223 HTS tapes of the Type HT-CA, Type HT-SS and Type H models under short-circuit current impacts at the LNG cooling temperature (85 K-90 K). An experimental platform is designed and established for the ampacity tests of HTS tapes above LN2 cooling temperature (77 K). The AC over-current impact tests at 85 K-90 K are carried out on each sample of Bi-2223 tapes respectively, and the experimental results are analyzed and compared to evaluate their performances under different operating conditions. The results indicate that the Type HT-CA tape can withstand 50 Hz short-circuit current impact with the amplitude of 1108 A (10 times of critical current Ic ) for 100 ms at 90 K, and its resistance is the smallest of the three tested samples under similar current impacts. Therefore, the Type HT-CA Bi-2223 tape is the optimal superconductor of the HTS power cable in the hybrid energy transmission pipeline.
基金support of RSSB to this work via the project RSSB/COF-UOH-49 is greatly appreciated.The authors also acknowledge the support by FCT,through IDMEC,under LAETA,project UIDB/50022/2020.
文摘Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests.