As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the cou...As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the country.Therefore,it is necessary to take into account the dual goals of poverty reduction and ecological environment construction,and explore a win-win road of ecological construction and poverty alleviation in line with the reality of the upper reaches of the Yangtze River.Taking Xueshan Township,Luquan Yi and Miao Autonomous County,Yunnan Province,which is located in the poor mountainous area of the upper reaches of the Yangtze River as an example,based on many field investigations and existing investigation and statistical data,this paper analyzes the current situation and main problems of land use in Xueshan Township,and then puts forward measures and suggestions for rational utilization of land resources in Xueshan Township.This can provide a necessary reference for the next implementation of rural revitalization strategy and ecological construction.展开更多
Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then ...Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then sources of moisture contributing to severe rainfallover eastern and western Sichuan Province (ES and WS for short) are examined with particularreference. It turns out that the severe rainfall occurring locally dominates summer rainfall overthe upper reaches of the Yangtze River. Climatological rainfall and anomalous one constitute severerainfall, but the latter accounts much for severe rainfall. The meridional moisture transportdominates the composite moisture transport on the occurrence day for ES region, while the zonal isequivalent to the meridional for WS region. Correlation between the moisture transport fluxes overthe two regions of severe rainfall and other regions, the anomaly and variation of the moisturetransport day by day during the period of severe rainfall lend a support for the conclusion that themeeting of the moisture from the West Pacific through the South China Sea (SCS) and the one fromnorthwestern China exerts a vital effect on the occurrence of severe rainfall, which can not beneglected.展开更多
In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale ...In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.展开更多
The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze...The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze River very vulnerable to watererosion and gravityerosion. Through analyzing the hydrological and sediment load statistics recorded by majorhydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annualrunoff volume and annual sediment load, wefind out that the suspended-sediment of Yangtze river hasbeen decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei HydrologicalStation on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and GaochangHydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Stationalong Yangtze River mainstream share the same experience too. But the statistics obtained atPingshan Hydrological Station on Jinshajiang River shows the sedimentload there has increased.Taking ecological construction, hydraulic engineering construction and precipitation changes intoconsideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River,Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation forfurther study of river sediment changes of the upper reaches of Yangtze River, and measures tocontrol river sedimentation.展开更多
Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitat...Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitation and topographical variables are established to extract the effect of topography on the annual and seasonal precipitation in the upper-middle reaches of the Yangtze River. Then, this paper uses a successive interpolation approach (SIA), which combines GIS techniques with the multiple regressions, to improve the accuracy of the spatial interpolation of annual and seasonal rainfall. The results are very satisfactory in the case of seasonal rainfall, with the relative error of 6.86%, the absolute error of 13.07 mm, the average coefficient of variation of 0.070, and the correlation coefficient of 0.9675; in the case of annual precipitation, with the relative error of 7.34%, the absolute error of 72.1 mm, the average coefficient of variation of 0.092, and the correlation coefficient of 0.9605. The analyses of annual mean precipitation show that the SIA calculation of 3-5 steps considerably improves the interpolation accuracy, decreasing the absolute error from 211.0 mm to 62.4 mm, the relative error from 20.74% to 5.97%, the coefficient of variation from 0.2312 to 0.0761, and increasing the correlation coefficient from 0.5467 to 0.9619. The SIA iterative results after 50 steps identically converge to the observed precipitation.展开更多
Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as wel...Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as well as one of the areas in China with most notable LUCC, have been on the Chinese Government's list of priority areas for ecological restoration. This paper is to reveal the trend of LUCC and the ecological degradation arising from it, and to provide a basis for the future sustainable use of land resources in the region based on a detailed analysis of Yiliang County. Based on the county's land use/cover maps in 1960, 1980 and 2000 drawn with the aid of aerial photograph interpretation, field investigation and GIS based spatial-temporal data analysis, LUCC during 1960~2000 period and the ecological degradation arising from it were analyzed. Using the Markv model, the paper brings out a forecast of what the county's LUCC would be like if the county's current land use continues, as well as the reasons and countermeasures for restoring degraded ecosystems.展开更多
The remote sensing (RS) and geographical information system (GIS) technologies were adopted and a mathematic method was developed to evaluate the changes of ecosystem services in the upper reaches of Minjiang Rive...The remote sensing (RS) and geographical information system (GIS) technologies were adopted and a mathematic method was developed to evaluate the changes of ecosystem services in the upper reaches of Minjiang River-valley for providing advices to manage the ecosystem. The results showed that the land use change mainly occurred on forest, farmland and grassland. From 1986 to 1994, the area of farmland increased by 477% (60801 hm^2), while the area of forest decreased by 4.97% (89012.17 hm^2). From 1986 to 2000, the eco-service value of forest was degressive but that of farmland increased greatly as the increasing of planting area, while the total eco-service value decreased by 771.11×10^8 yuan RMB due to the rapid increase of population in this region. The driving force of eco-service change was also discussed in the paper. The nation policy of Natural Forest Protection Project has taken effect in preventing the decline of eco-services.展开更多
In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant ra...In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.展开更多
[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankto...[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.展开更多
By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural eco...By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural ecology;bridges,canals,ferries,pavilions,mansions,towers,temples,historical sites,production and living landscapes were analyzed in terms of humanistic ecology.On this basis,"Top Eight Views" in the upper reaches of the Yellow River were compared and the following conclusions obtained:mountain landscapes were distributed in the whole region,waterscapes unevenly valued in different cities,bridges,canals and ferries mostly located in Ningxia,temples commonly found in all cities,garden arts introduced into cities,traditional cultures carried forward by historical relics.Then the relationship between "Top Eight Views" and regional eco-cultures was analyzed,and it was proposed that humanistic and cultural connotations of these "Top Eight Views" contributed a lot to beautifying urban environment,satisfying needs of the locals' spiritual life,carrying forward local history and culture,enriching urban cultural connotations,expanding living spaces of local residents and improving integrated functions of cities."Top Eight Views" culture complied with the construction gist of urban ecological cultures,and was of great referential value for the construction of urban ecological cultures in the upper reaches of the Yellow River,and also the healthy,scientific and sustainable development of local cities.展开更多
After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors...After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.展开更多
The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large...The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions.展开更多
The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwa...The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwater in the region of the middle and lower reaches of the YangtzeRiver and their relations to the composition of the water-bearing media, properties of the overly-ing rocks and soils, redox environment, and groundwater flow condition, mineralization and pHof groundwater.展开更多
This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these...This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.展开更多
Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sedime...Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.展开更多
Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly inf...Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly influenced by the specific geographical environment and ecological conditions of mountains.Based on field investigation,this paper uses physical,geographical,and ecological theories to make a comprehensive study of rural settlements and mountain disasters in the upper Min River,which is an ecologically fragile area with high-frequency disasters(collapse,landslide,debris flow,etc.) and a minority inhabit district.By applying these modern scientific theories,this paper attempts to shed some light on the relationship between rural settlements and mountain disasters.Consequently,an in-depth understanding of this relationship was achieved as follows:(1) Rural settlements and mountain disasters are mainly distributed in the intercepted flows of water and soil; and both quantity and quality of arable lands in mountains are important indicators of these flows.(2) The Small Watershed Management Project is a complex system of rural settlements and mountain disasters that interacts with and constrains the ecological system.By this project,the human survival will be better guaranteed.Being fundamental for the ecological reconstruction,the coupling mechanism of rural settlements and mountain disasters is not only an engine to promote harmonious development between human and nature,but also a bridge to link them.展开更多
Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-...Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).展开更多
Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR ...Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR in summer identified by the first two modes: a region-wide flood over the entire YHR (RWF); a region-wide drought over the entire YHR (RWD); a flood in the south with a drought in the northern region of the Yangtze River (FS-DN); and a drought in the south with a flood in the northern region of the Yangtze River (DS-FN). Based on the first two modes and the actual precipitation departure percentage, a new precipitation index is defined in this paper. The typical flood/drought years associated with the various rainfall patterns defined by this precipitation index are more representative and closer to reality compared to some existing precipitation indexes which just use the area-mean precipitation or the EOF time components individually. The characteristics of atmospheric circulation in summer corresponding to the four main precipitation patterns over the YHR in summer show the features of atmospheric circulation differ in different precipitation pattern years. Although the different patterns share a common main influential circulation system, such as the blocking high over northeastern Asia, the low trough of westerly flows in the mid latitudes, the West Pacific Subtropical High (WPSH), and the high ridge over the Tibet Plateau, the difference in location and intensity of these systems can lead to different distributions of precipitation anomalies.展开更多
Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the...Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
文摘As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the country.Therefore,it is necessary to take into account the dual goals of poverty reduction and ecological environment construction,and explore a win-win road of ecological construction and poverty alleviation in line with the reality of the upper reaches of the Yangtze River.Taking Xueshan Township,Luquan Yi and Miao Autonomous County,Yunnan Province,which is located in the poor mountainous area of the upper reaches of the Yangtze River as an example,based on many field investigations and existing investigation and statistical data,this paper analyzes the current situation and main problems of land use in Xueshan Township,and then puts forward measures and suggestions for rational utilization of land resources in Xueshan Township.This can provide a necessary reference for the next implementation of rural revitalization strategy and ecological construction.
基金This paper is jointly supported by the National Natural Science Foundation of China under Grant Nos. 40375014, 40475029the National Basic Research Program of China under "973" Grant No. 2004CB418300.
文摘Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then sources of moisture contributing to severe rainfallover eastern and western Sichuan Province (ES and WS for short) are examined with particularreference. It turns out that the severe rainfall occurring locally dominates summer rainfall overthe upper reaches of the Yangtze River. Climatological rainfall and anomalous one constitute severerainfall, but the latter accounts much for severe rainfall. The meridional moisture transportdominates the composite moisture transport on the occurrence day for ES region, while the zonal isequivalent to the meridional for WS region. Correlation between the moisture transport fluxes overthe two regions of severe rainfall and other regions, the anomaly and variation of the moisturetransport day by day during the period of severe rainfall lend a support for the conclusion that themeeting of the moisture from the West Pacific through the South China Sea (SCS) and the one fromnorthwestern China exerts a vital effect on the occurrence of severe rainfall, which can not beneglected.
基金supported by the National Natural Science Foundation of China(42041006)the Natural Science Foundation of Qinghai Province(2020-ZJ-906).
文摘In order to study the infiltration characteristics of grassland soil in the super large scale landslides distribution area in the upper reaches of the Yellow River,this study selected the Xiazangtan super large scale distribution area in Jianzha County as the study area.Through experiments and numerical simulations,plant roots characteristics,soil physical properties and infiltration characteristics of naturally grazed grassland and enclosed grassland with different slope directions were compared and analyzed,and the influence of rainfall on seepage field and stability of the two grassland slopes were discussed.The results show that the highest soil moisture infiltration capacity(FIR)is found on the shady slope of the enclosed grassland(2.25),followed by the sunny slope of the enclosed grassland(1.23)and the shady slope of the naturally grazed grassland(-0.87).Correlation analysis show that soil water content,root dry weight density,total soil porosity,number of forks and root length are positively correlated with infiltration rate(P<0.05),whereas soil dry density is negatively correlated with infiltration rate(P<0.05).The results of stepwise regression analyses show that soil water content,total soil porosity,root length and number of forks are the main factors affecting soil infiltration capacity.And the ability of roots to increase soil infiltration by improving soil properties is higher than the effect of roots itself.After 60 min of simulated rainfall,the safety factors of the shady slopes of naturally grazed grassland and enclosed grassland are reduced by 29.56%and 19.63%,respectively,comparing to those before rainfall.Therefore,in this study,the roots play a crucial role in regulating soil infiltration and enhance slope stability by increasing soil water content,soil total porosity and shear strength while decreasing soil dry density.The results of this study provide theoretical evidence and practical guidance for the effective prevention and control of secondary geological disasters such as soil erosion and shallow landslide on the slope of river banks in the study area by using plant ecological measures.
文摘The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze River very vulnerable to watererosion and gravityerosion. Through analyzing the hydrological and sediment load statistics recorded by majorhydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annualrunoff volume and annual sediment load, wefind out that the suspended-sediment of Yangtze river hasbeen decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei HydrologicalStation on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and GaochangHydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Stationalong Yangtze River mainstream share the same experience too. But the statistics obtained atPingshan Hydrological Station on Jinshajiang River shows the sedimentload there has increased.Taking ecological construction, hydraulic engineering construction and precipitation changes intoconsideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River,Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation forfurther study of river sediment changes of the upper reaches of Yangtze River, and measures tocontrol river sedimentation.
基金The National 973 Project of China, No.2001CB309404 O versea O utstanding Youth Cooperation Project, N o. 40128001/D 05N ationalN aturalScience Foundation ofChina,N o.49375248 Zhejiang Province Science Research (C33)Project,N o.2004C33082
文摘Using geographic information system (GIS) techniques and the newest seasonal and annual average precipitation data of 679 meteorological stations from 1971 to 2000, the multiple regressions equations of the precipitation and topographical variables are established to extract the effect of topography on the annual and seasonal precipitation in the upper-middle reaches of the Yangtze River. Then, this paper uses a successive interpolation approach (SIA), which combines GIS techniques with the multiple regressions, to improve the accuracy of the spatial interpolation of annual and seasonal rainfall. The results are very satisfactory in the case of seasonal rainfall, with the relative error of 6.86%, the absolute error of 13.07 mm, the average coefficient of variation of 0.070, and the correlation coefficient of 0.9675; in the case of annual precipitation, with the relative error of 7.34%, the absolute error of 72.1 mm, the average coefficient of variation of 0.092, and the correlation coefficient of 0.9605. The analyses of annual mean precipitation show that the SIA calculation of 3-5 steps considerably improves the interpolation accuracy, decreasing the absolute error from 211.0 mm to 62.4 mm, the relative error from 20.74% to 5.97%, the coefficient of variation from 0.2312 to 0.0761, and increasing the correlation coefficient from 0.5467 to 0.9619. The SIA iterative results after 50 steps identically converge to the observed precipitation.
基金the result of the project(No.400610o6)funded by the National Natural Science Foundation of China.
文摘Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as well as one of the areas in China with most notable LUCC, have been on the Chinese Government's list of priority areas for ecological restoration. This paper is to reveal the trend of LUCC and the ecological degradation arising from it, and to provide a basis for the future sustainable use of land resources in the region based on a detailed analysis of Yiliang County. Based on the county's land use/cover maps in 1960, 1980 and 2000 drawn with the aid of aerial photograph interpretation, field investigation and GIS based spatial-temporal data analysis, LUCC during 1960~2000 period and the ecological degradation arising from it were analyzed. Using the Markv model, the paper brings out a forecast of what the county's LUCC would be like if the county's current land use continues, as well as the reasons and countermeasures for restoring degraded ecosystems.
基金This study was supported and funded by the projects of NKBRSF, P.R. China (No. 2002CB111506)
文摘The remote sensing (RS) and geographical information system (GIS) technologies were adopted and a mathematic method was developed to evaluate the changes of ecosystem services in the upper reaches of Minjiang River-valley for providing advices to manage the ecosystem. The results showed that the land use change mainly occurred on forest, farmland and grassland. From 1986 to 1994, the area of farmland increased by 477% (60801 hm^2), while the area of forest decreased by 4.97% (89012.17 hm^2). From 1986 to 2000, the eco-service value of forest was degressive but that of farmland increased greatly as the increasing of planting area, while the total eco-service value decreased by 771.11×10^8 yuan RMB due to the rapid increase of population in this region. The driving force of eco-service change was also discussed in the paper. The nation policy of Natural Forest Protection Project has taken effect in preventing the decline of eco-services.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX-SW-352)
文摘In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.
基金Supported by Fishery Germplasm Conservation Project of the Ministry of Agriculture(MOA)(No.6115048)State Specific Project on Fundamental Scientific Research Financed to Public Institutes(No.2009JBFB10)~~
文摘[Objective] Surveys of phytoplankton were taken during the autumn of 2009 along Anhui-Jiangsu reaches of the Yangtze River to understand the species com- position and their spatial distributions. [Method] Phytoplankton species, their quanti- ties, biomass and the Mcnaughton's dominance indices were all measured and their spatial distribution characteristics were determined using cluster analysis. [Result] There were 27 species, belonging to 5 phyla, namely Chlorophyta, Bacillariophyta, Cyanophyta, Euglenophyta and Cryptophyta, of phytoplankton collected and identified from the surveys. Results showed that Bacillariophyta was the predominant phyto- plankton with 16 species collected which accounted for 59.3% of the total species identified. The number of species collected belonging to Chlorophyta, Cyanophyta, Cryptophyta and Euglenophyta were 6, 2, 2, and 1, accounting for 22.2%, 7.4%, 7.4% and 3.7% of the total number identified, respectively. At the species level, the predominant species were Fragilaria crotonensis, Melosira italica, Navicula crypto- cephala, Cyclotella striata and Chroomonas acuta. Phytoplankton abundance was ranging from 5.68×10^4 to 7.08×10^4 cells/L with its average of 6.01×10^4 cells/L. Phyto- plankton biomass was ranging from 30.43 to 34.73 μg/L with its average of 32.46 μg/L. Compared with the previous reports, the number of phytoplankton species was decreased but its abundance and biomass was increased along the Jiangsu reach of the Yangtze River. However, Bacillariophyta species were still the predominant species and the phytoplankton community structure had not significantly changed from the previous studies. [Conclusion] These results might be explained as that the water quality in the Yangtze River was deteriorated but had not come to the worst. The results of similarity analysis gave two clusters of phytoplankton community as Nanjing, Wuhu and Jiangyin sampling sites were clustered into one group and Tongling and Anqing were clustered into another group.
基金Supported by Hebei Provincial Social Science Foudation " Ecological Environment and Urban Development in the Upper Reaches of the Yellow River (1368 - 1928) " (HB10GJ016) ~~
文摘By studying typical "Top Eight Views" in cities like Xining,Lanzhou and Yinchuan in the upper reaches of the Yellow River,mountain and water landscapes in the study area were analyzed in terms of natural ecology;bridges,canals,ferries,pavilions,mansions,towers,temples,historical sites,production and living landscapes were analyzed in terms of humanistic ecology.On this basis,"Top Eight Views" in the upper reaches of the Yellow River were compared and the following conclusions obtained:mountain landscapes were distributed in the whole region,waterscapes unevenly valued in different cities,bridges,canals and ferries mostly located in Ningxia,temples commonly found in all cities,garden arts introduced into cities,traditional cultures carried forward by historical relics.Then the relationship between "Top Eight Views" and regional eco-cultures was analyzed,and it was proposed that humanistic and cultural connotations of these "Top Eight Views" contributed a lot to beautifying urban environment,satisfying needs of the locals' spiritual life,carrying forward local history and culture,enriching urban cultural connotations,expanding living spaces of local residents and improving integrated functions of cities."Top Eight Views" culture complied with the construction gist of urban ecological cultures,and was of great referential value for the construction of urban ecological cultures in the upper reaches of the Yellow River,and also the healthy,scientific and sustainable development of local cities.
文摘After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.
基金financially supported by the National Nature Science Foundation of China under Grant No. 41372333, 40802089, 41172158China Geological Survey (grant No. 1212011220123)
文摘The upper reaches of the Yellow River in northeastern Tibetan Plateau are geohazards areas.The evolution of the Yellow River,chronology of some landslides,and spatiotemporal distribution characteristics of super large scale and giant landslides within the region are summarized using paleoclimate evidence,and the relationship between the intensive landslide period and climatic changes since the Last Glacial period is analyzed.It is concluded that (1) Super large scale and giant landslides are distributed widely within the region,particularly in the Qunke-Jianzha basin.(2) The chronological sequence of landslides is established by dating the slip zones of landslides and analyzing the relations between landslides and their overlying or underlying loess formations.Five landslide development periods are determined:53-49 ka BP,33-24 ka BP,10-8 ka BP,5-3.5 ka BP,and the present.(3) These correspond closely to warm and wet periods during the last 100,000 years,i.e.,two weak paleosol development stages of Malan loess deposited during the last Glacial period in the Chinese loess Plateau,L1-4 and L1-2 that belong to the marine oxygen isotope stage 3,the last deglaeial period,the Holocene Optimum,and the modern global warming period.(4) Landslide triggers may be closely linked to warm and wet periods related to rapid climatic transitions.
文摘The paper deals with the background features, formation and distribution of the chemical el-ements K, Na, Ca, Mg, Si, Fe, Mn, Cr, Ni,V, Co, Ti, Mo, Cu, Pb, Zn, As, Hg, Cd, Be, Li, Sr, B,F, Cl, Br and I in the groundwater in the region of the middle and lower reaches of the YangtzeRiver and their relations to the composition of the water-bearing media, properties of the overly-ing rocks and soils, redox environment, and groundwater flow condition, mineralization and pHof groundwater.
基金the National Natural Science Foundation of China (40671153)the Scientific Research Fund of Hunan Provincial Education Department (05C175) the Knowledge Innovation Program of Chinese Academy Sciences (KZCX2- YW-302)
文摘This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.
基金the China’s National Basic Research Program:"Studies on the Process of Eutrophication of Lakesand the Mechanism of the Blooming of Blue Green Alga" (No2002CB412304)
文摘Thirteen sediment core samples(0-10 cm) were taken from the seven lakes in the middle and lower reaches of the Yangtze River to determine the contents and distributions of organic phosphorus(P) fractions in the sediments of the shallow lakes in the area.The organic P fractions in the sediments were in the order of moderately labile organic P(MLOP) > moderately resistant organic P(MROP) > highly resistant organic P(HROP) > labile organic P(LOP),with average proportional ratios of 13.2:2.8:1.3:1.0.LOP,MLOP,and MROP were significantly related to the contents of total organic carbon(TOC),water-soluble P(WSP),algal-available P(AAP),NaHCO3-extractable P(Olsen-P),total P(TP),organic P(OP),and inorganic P(IP).However,HROP was significantly related to OP and weakly correlated with TOC,WSP,AAP,Olsen-P,TP or IP.This suggested that organic P,especially LOP and MLOP in sediments,deserved even greater attention than IP in regards to lake eutrophication.In terms of organic P,sediments were more hazardous than soils in lake eutrophication.Although OP concentrations were higher in moderately polluted sediment than those in heavily polluted sediment,LOP and MLOP were higher in the heavily polluted sediment,which indicated that heavily polluted sediment was more hazardous than moderately polluted sediment in lake eutrophication.
基金financially supported by the National Natural Science Foundation of China(Grant No.41101164 and 41371185)Directional Project of Institute of Mountain Hazards and Environment of Chinese Academy of Sciences(Grant No.SDS-135-1204-01)the key project of Education Department of Sichuan Province(Grant No.13ZA0160)
文摘Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly influenced by the specific geographical environment and ecological conditions of mountains.Based on field investigation,this paper uses physical,geographical,and ecological theories to make a comprehensive study of rural settlements and mountain disasters in the upper Min River,which is an ecologically fragile area with high-frequency disasters(collapse,landslide,debris flow,etc.) and a minority inhabit district.By applying these modern scientific theories,this paper attempts to shed some light on the relationship between rural settlements and mountain disasters.Consequently,an in-depth understanding of this relationship was achieved as follows:(1) Rural settlements and mountain disasters are mainly distributed in the intercepted flows of water and soil; and both quantity and quality of arable lands in mountains are important indicators of these flows.(2) The Small Watershed Management Project is a complex system of rural settlements and mountain disasters that interacts with and constrains the ecological system.By this project,the human survival will be better guaranteed.Being fundamental for the ecological reconstruction,the coupling mechanism of rural settlements and mountain disasters is not only an engine to promote harmonious development between human and nature,but also a bridge to link them.
基金supported by the National Natural Science Foundation of China(91025002,30970492)the National Key Technology Research&Development Program(2012BAC08B05)the Key Project of the Chinese Academy of Sciences(KZZD-EW-04-05)
文摘Long-term temperature variability has significant effects on runoff into the upper reaches of inland rivers. This paper developed a tree-ring chronology of Qilian juniper (Sabina przewalskii Kom.) from the upper tree-line of the middle Qilian Mountains within the upper reaches of Heihe River Basin, Northwest China for a long-term reconstruction of temperature at the study site. In this paper, tree-ring chronology was used to examine climate-growth associations considering local climate data obtained from Qilian Meteorological Station. The results showed that temperatures correlated extremely well with standardized growth indices of trees (r=0.564, P<0.001). Tree-ring chronology was highest correlated with annual mean temperature (r=0.641, P<0.0001). Annual mean temperature which spans the period of 1445–2011 was reconstructed and explained 57.8% of the inter-annual to decadal temperature variance at the regional scale for the period 1961–2011. Spatial correlation patterns revealed that reconstructed temperature data and gridded temperature data had a significant correlation on a regional scale, indicating that the reconstruction represents climatic variations for an extended area surrounding the sampling sites. Analysis of the temperature reconstruction indicated that major cold periods occurred during the periods of 1450s–1480s, 1590s–1770s, 1810s–1890s, 1920s–1940s, and 1960s–1970s. Warm intervals occurred during 1490s–1580s, 1780s–1800s, 1900s–1910s, 1950s, and 1980s to present. The coldest 100-year and decadal periods occurred from 1490s–1580s and 1780s–1800s, respectively, while the warmest 100 years within the studied time period was the 20<sup>th</sup> century. Colder events and intervals coincided with wet or moist conditions in and near the study region. The reconstructed temperature agreed well with other temperature series reconstructed across the surrounding areas, demonstrating that this reconstructed temperature could be used to evaluate regional climate change. Compared to the tree-ring reconstructed temperature from nearby regions and records of glacier fluctuations from the surrounding high mountains, this reconstruction was reliable, and could aid in the evaluation of regional climate variability. Spectral analyses suggested that the reconstructed annual mean temperature variation may be related to large-scale atmospheric–oceanic variability such as the solar activity, Pacific Decadal Oscillation (PDO) and El Ni?o–Southern Oscillation (ENSO).
基金supported by the projectof the National Basic Research Program of China (GrantNo. 2009CB421401)the Key Technologies R&D Program (Grant No. 2009BAC51B02)+2 种基金the Special Scientific Research Fund of the Meteorological Public Welfare Profession of China (Grant No. GYHY200906018)the National Natural Science Foundation of China (Grant No.40705039)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. IAP07415)
文摘Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR in summer identified by the first two modes: a region-wide flood over the entire YHR (RWF); a region-wide drought over the entire YHR (RWD); a flood in the south with a drought in the northern region of the Yangtze River (FS-DN); and a drought in the south with a flood in the northern region of the Yangtze River (DS-FN). Based on the first two modes and the actual precipitation departure percentage, a new precipitation index is defined in this paper. The typical flood/drought years associated with the various rainfall patterns defined by this precipitation index are more representative and closer to reality compared to some existing precipitation indexes which just use the area-mean precipitation or the EOF time components individually. The characteristics of atmospheric circulation in summer corresponding to the four main precipitation patterns over the YHR in summer show the features of atmospheric circulation differ in different precipitation pattern years. Although the different patterns share a common main influential circulation system, such as the blocking high over northeastern Asia, the low trough of westerly flows in the mid latitudes, the West Pacific Subtropical High (WPSH), and the high ridge over the Tibet Plateau, the difference in location and intensity of these systems can lead to different distributions of precipitation anomalies.
基金The key technology R&D program of China, No.2007BAC29B02Project of Jiangsu Key Laboratory of Meteorological Disaster, No.KLME060101
文摘Using the daily data of temperature from China Meteorological Administration and the NCEP/NCAR reanalysis from 1960 to 2005, we have analyzed the relationships between the summertime high/low temperature events in the middle and lower reaches of the Yangtze River (MLRYR) and the related circulation anomalies in the Eastern Hemisphere. Our results have demonstrated that a significantly increasing trend is observed in daily minimum temperature in the past 50 years. And in some regions in the Northern Hemisphere, the opposite scenarios are observed in circulation anomalies in lower and upper parts of the troposphere in the years when the temperatures are higher than normal, as compared to those in the years when the temperatures are lower than normal in the middle and lower reaches of the Yangtze River (MLRYR). Additionally, the anomalous circulation structure in vertical direction in both the high and lower temperature years are barotropic. It is found that the emergence and maintenance of the aforementioned anomalous circulations are related to three kinds of wave train teleconnection patterns. Further more, influences of the long wave surface radiation on the air temperature are stronger in the nighttime than that in the daytime. While both the maximum and minimum temperatures have negative relationships with the sensible heat flux but positive relationships with the latent heat flux. To some extent, the anomalous dynamic heating (cooling) caused by the vertical thermal advection as well as the diabatic heating (cooling) caused by diabatic processes can explain the formation of the high (low) temperature events in the middle and lower reaches of the Yangtze River (MLRYR) in boreal summer.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.