Experimental study was conducted with regard to upgrading low-quality coal by low temperature pyrolysis technology and fluidization classification technology, which laid the theoretical foundation for research and dev...Experimental study was conducted with regard to upgrading low-quality coal by low temperature pyrolysis technology and fluidization classification technology, which laid the theoretical foundation for research and development of low-quality coal upgrading process. Firstly, a pyrolysis pilot experiment of long-flame coal was performed and the optimum pyrolysis conditions were found. When the final pyrolysis temperature was 450?C and the residence time was 10 minutes, the content of semicoke volatile dry ash-free was about 22.89% and the content of semicoke ash was about 16.1%. More than 5% of the ash needs to be removed before entering the pyrolysis fluidized bed. Thus, classification tests were carried out to pick out the coal particles with the target size of 500 μm, using a gas-solid fluidized bed coal picker. It was found that the separating effect of coal particles was the most satisfactory when the inlet velocity at the bottom was 3.27 m/s. The percentage of particles with diameters less than 500 μm was as low as 28.7% in the coarse samples. Based on the test results, a novel process of low-quality coal upgrade and coupling was proposed, which realized the sorting, grading, drying and pyrolysis of low-quality coal through the multi-stage fluidized bed integrated process.展开更多
The coal with low moisture during carbonization could not only increase the yield of coke,but also promote the coke quality and reduce the energy consumption.In this paper,the influence of the moisture in the blend co...The coal with low moisture during carbonization could not only increase the yield of coke,but also promote the coke quality and reduce the energy consumption.In this paper,the influence of the moisture in the blend coal(1.8%10.13%)on the product yields and coke quality during coal carbonization were investigated.The results show that the coke yield is increased from 75.90%to 77.16%,and the coke qualities such as coke strength after reaction with CO2(CSR),coke reactivity index(CRI),fragmentation index(M25)and abrasion index(M10))are also improved when the moisture of the blend coal decreases from 10.13%to 1.80%in a bench scale reactor.Due to the secondary reaction,tar become lighter when the moisture is decreased.In order to further prove the above results,the blend coal with 1.8%and 9%10%(common moisture used in coke plant)moisture is carbonized in a coke oven with 6 m height,the results show that CRI are 23.4%and 27.3%,CRS are 67.1%and 62.2%under 1.8%and 9%10%moisture of blend coal.Moreover,the variation of the moisture in blend coal has a limited influence on dust emission at the ascension pipe and the charging car.展开更多
文摘Experimental study was conducted with regard to upgrading low-quality coal by low temperature pyrolysis technology and fluidization classification technology, which laid the theoretical foundation for research and development of low-quality coal upgrading process. Firstly, a pyrolysis pilot experiment of long-flame coal was performed and the optimum pyrolysis conditions were found. When the final pyrolysis temperature was 450?C and the residence time was 10 minutes, the content of semicoke volatile dry ash-free was about 22.89% and the content of semicoke ash was about 16.1%. More than 5% of the ash needs to be removed before entering the pyrolysis fluidized bed. Thus, classification tests were carried out to pick out the coal particles with the target size of 500 μm, using a gas-solid fluidized bed coal picker. It was found that the separating effect of coal particles was the most satisfactory when the inlet velocity at the bottom was 3.27 m/s. The percentage of particles with diameters less than 500 μm was as low as 28.7% in the coarse samples. Based on the test results, a novel process of low-quality coal upgrade and coupling was proposed, which realized the sorting, grading, drying and pyrolysis of low-quality coal through the multi-stage fluidized bed integrated process.
基金Project(51706160)supported by the National Natural Science Foundation of ChinaProject(T201906)supported by the Foundation for Outstanding Youth Innovative Research Groups of Higher Education Institution in Hubei Province,China
文摘The coal with low moisture during carbonization could not only increase the yield of coke,but also promote the coke quality and reduce the energy consumption.In this paper,the influence of the moisture in the blend coal(1.8%10.13%)on the product yields and coke quality during coal carbonization were investigated.The results show that the coke yield is increased from 75.90%to 77.16%,and the coke qualities such as coke strength after reaction with CO2(CSR),coke reactivity index(CRI),fragmentation index(M25)and abrasion index(M10))are also improved when the moisture of the blend coal decreases from 10.13%to 1.80%in a bench scale reactor.Due to the secondary reaction,tar become lighter when the moisture is decreased.In order to further prove the above results,the blend coal with 1.8%and 9%10%(common moisture used in coke plant)moisture is carbonized in a coke oven with 6 m height,the results show that CRI are 23.4%and 27.3%,CRS are 67.1%and 62.2%under 1.8%and 9%10%moisture of blend coal.Moreover,the variation of the moisture in blend coal has a limited influence on dust emission at the ascension pipe and the charging car.