Based on the measurements of petrological, petrophysical and elastic properties of the samples of different sedimentary facies in the fourth member of Sinian Dengying Formation (Deng 4 Member) in the Sichuan Basin, th...Based on the measurements of petrological, petrophysical and elastic properties of the samples of different sedimentary facies in the fourth member of Sinian Dengying Formation (Deng 4 Member) in the Sichuan Basin, the diagenetic processes of reservoirs of different sedimentary facies and their controls on the petrophysical properties were discussed. The results show that cracks and mineral composition jointly control the petrophysical properties, and both are significantly influenced by sedimentary environment and diagenesis. The microbial dolomite of mound-shoal facies mainly experienced multi-stage dolomitization, penecontemporaneous dissolution, tectonic rupture and hydrothermal/organic acid dissolution processes, giving rise to cracks and dissolved pores. The grannular dolomite of inter-mound-shoal bottomland or dolomitic lagoon facies mainly underwent mechanical compaction, burial dolomitization and tectonic-hydrothermal action, creating cracks and intercrystalline pores. The diagenesis related to crack development increases the pressure- and saturation-dependent effects of samples, leading to significant decrease in the compressional wave impedance and Poisson's ratio. Dolomitization changes the properties of mineral particles, resulting in a Poisson's ratio close to dolomite. The muddy, siliceous and calcareous sediments in the low-energy environment lead to the decrease of impedance and the differential change of Poisson's ratio (significantly increased or decreased). The samples with both cracks and dissolved pores show high P-wave velocity dispersion characteristics, and the P-wave velocity dispersion of samples with only fractures or pores is the lowest.展开更多
West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults.In this study,double-difference tomography was used to obtain the 3D velocity tomograms of P and S ...West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults.In this study,double-difference tomography was used to obtain the 3D velocity tomograms of P and S waves beneath the western part of Java.To infer the geometry of the structure beneath the study area,precise earthquake hypo・center determination was first performed before tomographic imaging.For this,earthquake waveform data were extracted from the regional Meteorological,Climatological,Geophysical Agency(BMKG)network of Indonesia from South Sumatra to Central Java.The P and S arrival times for about 1,000 events in the period April 2009 to July 2016 were selected,the key features being events of magnitude>3,azimuthal gap<210°and number of phases>8.A nonlinear method using the oct-tree sampling algorithm from the NonLinLoc program was employed to determine the earthquake hypocenters.The hypocenter locations were then relocated using double-difference tomography(tomoDD).A significant reduction of travel-time(root mean square basis)and a better clustering of earthquakes were achieved which correlated well with the geological structure in West Java.Double-difference tomography was found to give a clear velocity structure,especially beneath the volcanic arc area,i.e.,under Mt Anak Krakatau,Mt Salak and the mountains complex in the southern part of West Java.Low velocity anomalies for the P and S waves as well as the vp/vs ratio below the volcanoes indicated possible partial melting of the upper mantle which ascended from the subducted slab beneath the volcanic arc.展开更多
Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in ...Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity (V S=3.90km/s) lower than that at the same depth in its eastern and southern areas (V S≥4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and low velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer (V S=3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the V P/V S ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60) in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively, and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.展开更多
On the basis of S wave information from Tai′an Xinzhou DSS profile and with reference to the results from P wave interpretation, the 2 D structures , including S wave velocity V s, ratio γ between V...On the basis of S wave information from Tai′an Xinzhou DSS profile and with reference to the results from P wave interpretation, the 2 D structures , including S wave velocity V s, ratio γ between V p and V s; and Poisson′s ratio σ , are calculated; the structural configuration of the profile is presented and the relevant inferences are drawn from the above results. Upwarping mantle districts (V s≈4.30 km/s)and sloping mantle districts (V s≈4.50 km/s) of the profile with velocity difference about 4% at the top of upper mantle are divided according to the differences of V s , γ and σ in different media and structures, also with reference to the information of their neighbouring regions; the existence of Niujiaqiao Dongwang high angle ultra crustal fault zone is reaffirmed; the properties of low and high velocity blocks(zones) including the crust mantle transitionalzone and the boudary indicators of North China rift valley are discussed. A comprehensive study is conducted on the relation of the interpretation results with earthquakes. It is concluded that the mantle upwarps, thermal material upwells through the high angle fault, the primary hypocenter was located at the crust mantle juncture 30.0~33.0 km deep, and additional stress excited the M S=6.8 and M S=7.2 earthquakes at specific locations around 9.0 km below Niujiaqiao Dongwang, the earthquakes took place around the high angle ultra crustal fault and centered in the brittle media and rock strata with low γ and low σ values.展开更多
By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2...By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2-D)structures of the crust and upper mantle are presented,including S-wave velocity Vs and the physical parameter of medium-Poisson’s ratio a.Taking other geological and geophysical information into account,and with reference to the results from petrophysical experiments at home and abroad,we carried out interpretation and inference with respect to deep crustal structure,tectonics,and lithologic characters.It has been concluded that in the upper and middle crust,a values are mostly not greater than 0.25,and rocks,which generally assume brittle,are mainly composed of granite; the rocks in the lower layer of the upper crust between Yangyuan-Huai’an containing inorganic CO2 itself releases carbon; for the rocks in the lower crust and crust-mantle transitional zone,which are comparatively展开更多
A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those fr...A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those from local earthquakes. 202 local earthquakes along the fault zone are based on this velocity model, location errors being estimated to be about 1.5 km. The present relocations fairly improved the accuracy of hypocenter locations for earthquakes in this area, which is recognized from small scatter of data in the arrival time distance diagram compared with that for the original locations in the Earthquake Catalogue of Sichuan Seismic Network. The obtained hypocenter distribution shows that shallow earthquakes, confined to the upper crust in the depth range from 3 km to 22 km, are actively occurring along the main fault of the Longmenshan fault zone. The velocity model and the location method are presently used quite effective for precisely locating local earthquakes such as those in Sichuan Province. Installation of these with the real time processing system developed by Tohoku University in the Sichuan Telemetered Seismic Network would help to improve the location accuracy of events beneath the network.展开更多
This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous v...This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous values of the Poisson’s ratio derived from the velocity profiles suggested that the boreholes might have traversed slow formations(i.e.with shear wave velocity smaller than the borehole fluid compressional wave velocity or“mud-wave speed”)and that conventional processing of the sonic logs might have misinterpreted the direct arrivals of fluid acoustic waves as arrivals caused by shear wave propagation in the rock.Consequently,the shear wave velocity profiles provided by the contractor were considered to be unreliable by the project team.To address these problems,a non-conventional determination of the shear wave velocity was implemented,based on the relationship between the Poisson’s ratio of the rock formation and the shape of the first train of sonic waves which arrived to the receivers in the sonic probe.The relationship was determined based on several hundreds of finite element simulations of the acoustic wave propagation in boreholes with the same diameter as used in the perforations.The present article describes how this non-conventional approach was developed and implemented to obtain the shear wave velocity profiles from the raw sonic logs.The approach allows an extension of the range of applicability of full-wave sonic logging to determination of shear wave velocity profiles in formations with low compressional wave velocities.The method could be used to obtain shear wave velocity profiles where compressional wave velocity is as low as slightly larger than the mud-wave speed.A sample sonic log in Log ASCII Standard(LAS)format is provided as supplementary material to this paper via Mendeley Data,together with the FORTRAN source code used to process the log following the approach described in this study.展开更多
We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersi...We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersion data. Thickness and S\|wave velocity of each sub layer are taken from Love wave dispersion data, then P\|wave velocity structure was deduced using Rayleigh wave dispersion data. Densities of sub layers were estimated by the empirical relationships between seismic velocity and rock density. Having S\| and P\|wave velocities, v p/ v s ratio is calculated for each sub layer. Six sub layers in crust of Tibetan Plateau has been identified, which are 0~8km, 8~30km, 30~40km, 40~62km, 62~68km and 68~75km respectively. The S\|wave velocity structure of the Plateau is 3 13, 3 32, 3 15, 3 92, 3 45 and 3 87 km/s for each sub layer; and P\|wave velocities are 6 00, 6 10, 5 72, 6 35, 6 78 and 6 64km/s respectively v p/ v s ratios in sub layers are 1 92, 1 84, 1 82, 1 62, 1 96 and 1 72; and corresponding Poisson ratios are 0 31, 0 29, 0 28, 0 19, 0 32 and 0 24. Our result on Poisson ratios of Tibetan crust was supported by seismic waveform modelling by Rodgers and Schwartz (1998).展开更多
In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision ...In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision of in-situ test and laboratory test, this paper presents a new approach, which is composed of two methods. One is the layered site seismic response method, whose layer transform matrix is always real. The other is a global-local optimization technique, which uses genetic algorithm (GA)-simplex method. An inversion of multi-component waveforms of P, SV and SH wave is carried out simultaneously. By inverting the records of three moderate and small earthquakes obtained from the Xiangtang borehole array (2^#) site, the soil dynamic characteristic parameters, including P velocity, damping ratio and frequency-dependent coefficient b, which has not been given in previous literatures, are calculated. The results show that the soil S wave velocity of the Xiangtang 2^# borehole is generally greater than that obtained from the 1994 in-situ test, and is close to the velocity of the 3^# borehole, which is more than 200 m away from the 2^# borehole. Meanwhile, perceptible soil nonlinear behavior under peak ground motion of about 60×10^-2 m/s^2 is detected by the inversion analysis. The presented method can be used for studying the soil response of other borehole array sites.展开更多
In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal par...In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.展开更多
Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic...Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic Poisson ratio μ d varies nearby 0.20.P wave velocity and elastic modulus have the same varying tendency as letter N. μ,μ d decrease with the increase of loading rate and μ d has a great effect on the parameters E d and E D.展开更多
The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis ...The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.展开更多
P-wave and S-wave velocities were obtained from seismic refraction survey in the foundation layer of Eket, the study area. The Tezcan’s approach discussed extensively in the work was used in conjunction with the exis...P-wave and S-wave velocities were obtained from seismic refraction survey in the foundation layer of Eket, the study area. The Tezcan’s approach discussed extensively in the work was used in conjunction with the existing mathematical relations between elastic parameters and seismic refraction velocities for the study of foundation layers in the study area. Based on the results, the elastic constants, allowable bearing pressure/capacity, ultimate bearing capacity and other parameters in Table 1 were determined. The result shows that allowable bearing pressure increases with increase in shear modulus and shear wave velocity. The empirical relation between allowable bearing capacity and shear modulus shows that the allowable bearing capacity increases with depth. Comparing our findings with some ranges of safe allowable bearing capacities of similar non cohesive/granular soils in literatures, the second layer with allowable bearing capacity range of 72.56 - 206.63 kN·m-2?(average = 154.78 kN·m-2) has been considered to be the safe shallow engineering foundation in the study area. The empirical relations between allowable bearing capacities shear modulus and shear wave velocity, in conjunction with the inferred maps, which serve as our findings, will be used as guide in the location of foundations. The inferred ultimate and allowable capacities correlate maximally for the two shallow foundations penetrated by the seismic waves. This perfect correlation reflects the uniqueness of the method.展开更多
Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of P...Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion. The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave velocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust. Generally, the Poisson's ratio is on the high side, however it has a better corresponding relation to the crustal velocity structure. An obvious block distribution feature is still shown on such a high background of Poisson's ratio. It is discovered by synthetically analyzing the velocity structure and Poisson's ratio distribution that there are high Poisson's ratio and complicated crust-mantle velocity structure feature in the Sichuan-Yunnan Diamond Block with Xiaojiang fault to be the east boundary and Yulong Snow Mountain fault to be the west boundary besides the frequent seismicity. This feature differs obviously from that of surrounding areas, which would provide geophysical evidence to deeply study the eastwardly flowage of lithospheric substances in the Qinghai-Tibet Plateau.展开更多
基金Supported by the National Natural Science Foundation of China(41774136)。
文摘Based on the measurements of petrological, petrophysical and elastic properties of the samples of different sedimentary facies in the fourth member of Sinian Dengying Formation (Deng 4 Member) in the Sichuan Basin, the diagenetic processes of reservoirs of different sedimentary facies and their controls on the petrophysical properties were discussed. The results show that cracks and mineral composition jointly control the petrophysical properties, and both are significantly influenced by sedimentary environment and diagenesis. The microbial dolomite of mound-shoal facies mainly experienced multi-stage dolomitization, penecontemporaneous dissolution, tectonic rupture and hydrothermal/organic acid dissolution processes, giving rise to cracks and dissolved pores. The grannular dolomite of inter-mound-shoal bottomland or dolomitic lagoon facies mainly underwent mechanical compaction, burial dolomitization and tectonic-hydrothermal action, creating cracks and intercrystalline pores. The diagenesis related to crack development increases the pressure- and saturation-dependent effects of samples, leading to significant decrease in the compressional wave impedance and Poisson's ratio. Dolomitization changes the properties of mineral particles, resulting in a Poisson's ratio close to dolomite. The muddy, siliceous and calcareous sediments in the low-energy environment lead to the decrease of impedance and the differential change of Poisson's ratio (significantly increased or decreased). The samples with both cracks and dissolved pores show high P-wave velocity dispersion characteristics, and the P-wave velocity dispersion of samples with only fractures or pores is the lowest.
基金the Directorate General of Resources for Science Technologythe Higher Education of the Republic of Indonesia for granting a PMDSU scholarship to SR
文摘West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults.In this study,double-difference tomography was used to obtain the 3D velocity tomograms of P and S waves beneath the western part of Java.To infer the geometry of the structure beneath the study area,precise earthquake hypo・center determination was first performed before tomographic imaging.For this,earthquake waveform data were extracted from the regional Meteorological,Climatological,Geophysical Agency(BMKG)network of Indonesia from South Sumatra to Central Java.The P and S arrival times for about 1,000 events in the period April 2009 to July 2016 were selected,the key features being events of magnitude>3,azimuthal gap<210°and number of phases>8.A nonlinear method using the oct-tree sampling algorithm from the NonLinLoc program was employed to determine the earthquake hypocenters.The hypocenter locations were then relocated using double-difference tomography(tomoDD).A significant reduction of travel-time(root mean square basis)and a better clustering of earthquakes were achieved which correlated well with the geological structure in West Java.Double-difference tomography was found to give a clear velocity structure,especially beneath the volcanic arc area,i.e.,under Mt Anak Krakatau,Mt Salak and the mountains complex in the southern part of West Java.Low velocity anomalies for the P and S waves as well as the vp/vs ratio below the volcanoes indicated possible partial melting of the upper mantle which ascended from the subducted slab beneath the volcanic arc.
文摘Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity (V S=3.90km/s) lower than that at the same depth in its eastern and southern areas (V S≥4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and low velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer (V S=3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the V P/V S ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60) in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively, and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.
文摘On the basis of S wave information from Tai′an Xinzhou DSS profile and with reference to the results from P wave interpretation, the 2 D structures , including S wave velocity V s, ratio γ between V p and V s; and Poisson′s ratio σ , are calculated; the structural configuration of the profile is presented and the relevant inferences are drawn from the above results. Upwarping mantle districts (V s≈4.30 km/s)and sloping mantle districts (V s≈4.50 km/s) of the profile with velocity difference about 4% at the top of upper mantle are divided according to the differences of V s , γ and σ in different media and structures, also with reference to the information of their neighbouring regions; the existence of Niujiaqiao Dongwang high angle ultra crustal fault zone is reaffirmed; the properties of low and high velocity blocks(zones) including the crust mantle transitionalzone and the boudary indicators of North China rift valley are discussed. A comprehensive study is conducted on the relation of the interpretation results with earthquakes. It is concluded that the mantle upwarps, thermal material upwells through the high angle fault, the primary hypocenter was located at the crust mantle juncture 30.0~33.0 km deep, and additional stress excited the M S=6.8 and M S=7.2 earthquakes at specific locations around 9.0 km below Niujiaqiao Dongwang, the earthquakes took place around the high angle ultra crustal fault and centered in the brittle media and rock strata with low γ and low σ values.
文摘By processing S-wave data from the Fanshi-Huai’an-Taipusiqi DSS profile,which is a three-component,wide-angle reflection/refraction profile,and in the light of the results from P-wave interpretation,two-dimensional(2-D)structures of the crust and upper mantle are presented,including S-wave velocity Vs and the physical parameter of medium-Poisson’s ratio a.Taking other geological and geophysical information into account,and with reference to the results from petrophysical experiments at home and abroad,we carried out interpretation and inference with respect to deep crustal structure,tectonics,and lithologic characters.It has been concluded that in the upper and middle crust,a values are mostly not greater than 0.25,and rocks,which generally assume brittle,are mainly composed of granite; the rocks in the lower layer of the upper crust between Yangyuan-Huai’an containing inorganic CO2 itself releases carbon; for the rocks in the lower crust and crust-mantle transitional zone,which are comparatively
文摘A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those from local earthquakes. 202 local earthquakes along the fault zone are based on this velocity model, location errors being estimated to be about 1.5 km. The present relocations fairly improved the accuracy of hypocenter locations for earthquakes in this area, which is recognized from small scatter of data in the arrival time distance diagram compared with that for the original locations in the Earthquake Catalogue of Sichuan Seismic Network. The obtained hypocenter distribution shows that shallow earthquakes, confined to the upper crust in the depth range from 3 km to 22 km, are actively occurring along the main fault of the Longmenshan fault zone. The velocity model and the location method are presently used quite effective for precisely locating local earthquakes such as those in Sichuan Province. Installation of these with the real time processing system developed by Tohoku University in the Sichuan Telemetered Seismic Network would help to improve the location accuracy of events beneath the network.
文摘This article presents a case study concerning a seismic characterization project.Full-wave sonic logging was used to characterize the shallow compressional wave and shear wave velocity profiles in the site.Anomalous values of the Poisson’s ratio derived from the velocity profiles suggested that the boreholes might have traversed slow formations(i.e.with shear wave velocity smaller than the borehole fluid compressional wave velocity or“mud-wave speed”)and that conventional processing of the sonic logs might have misinterpreted the direct arrivals of fluid acoustic waves as arrivals caused by shear wave propagation in the rock.Consequently,the shear wave velocity profiles provided by the contractor were considered to be unreliable by the project team.To address these problems,a non-conventional determination of the shear wave velocity was implemented,based on the relationship between the Poisson’s ratio of the rock formation and the shape of the first train of sonic waves which arrived to the receivers in the sonic probe.The relationship was determined based on several hundreds of finite element simulations of the acoustic wave propagation in boreholes with the same diameter as used in the perforations.The present article describes how this non-conventional approach was developed and implemented to obtain the shear wave velocity profiles from the raw sonic logs.The approach allows an extension of the range of applicability of full-wave sonic logging to determination of shear wave velocity profiles in formations with low compressional wave velocities.The method could be used to obtain shear wave velocity profiles where compressional wave velocity is as low as slightly larger than the mud-wave speed.A sample sonic log in Log ASCII Standard(LAS)format is provided as supplementary material to this paper via Mendeley Data,together with the FORTRAN source code used to process the log following the approach described in this study.
文摘We estimated crustal v p/ v s ratio of Tibetan Plateau by combined inversion of Love and Rayleigh wave dispersion data. It is developed by us that the joint inversion methods using both Love and Rayleigh wave dispersion data. Thickness and S\|wave velocity of each sub layer are taken from Love wave dispersion data, then P\|wave velocity structure was deduced using Rayleigh wave dispersion data. Densities of sub layers were estimated by the empirical relationships between seismic velocity and rock density. Having S\| and P\|wave velocities, v p/ v s ratio is calculated for each sub layer. Six sub layers in crust of Tibetan Plateau has been identified, which are 0~8km, 8~30km, 30~40km, 40~62km, 62~68km and 68~75km respectively. The S\|wave velocity structure of the Plateau is 3 13, 3 32, 3 15, 3 92, 3 45 and 3 87 km/s for each sub layer; and P\|wave velocities are 6 00, 6 10, 5 72, 6 35, 6 78 and 6 64km/s respectively v p/ v s ratios in sub layers are 1 92, 1 84, 1 82, 1 62, 1 96 and 1 72; and corresponding Poisson ratios are 0 31, 0 29, 0 28, 0 19, 0 32 and 0 24. Our result on Poisson ratios of Tibetan crust was supported by seismic waveform modelling by Rodgers and Schwartz (1998).
基金Joint Seismological Science Foundation of China (604036 and 105034)
文摘In order to understand the site soil response of the Xiangtang borehole seismic array under real strong ground motion, reveal the site response, verify the technique of borehole exploration, and improve the precision of in-situ test and laboratory test, this paper presents a new approach, which is composed of two methods. One is the layered site seismic response method, whose layer transform matrix is always real. The other is a global-local optimization technique, which uses genetic algorithm (GA)-simplex method. An inversion of multi-component waveforms of P, SV and SH wave is carried out simultaneously. By inverting the records of three moderate and small earthquakes obtained from the Xiangtang borehole array (2^#) site, the soil dynamic characteristic parameters, including P velocity, damping ratio and frequency-dependent coefficient b, which has not been given in previous literatures, are calculated. The results show that the soil S wave velocity of the Xiangtang 2^# borehole is generally greater than that obtained from the 1994 in-situ test, and is close to the velocity of the 3^# borehole, which is more than 200 m away from the 2^# borehole. Meanwhile, perceptible soil nonlinear behavior under peak ground motion of about 60×10^-2 m/s^2 is detected by the inversion analysis. The presented method can be used for studying the soil response of other borehole array sites.
基金supported by the Research Project of Tianjin Earthquake Agency(No.yb201901)Seismic Regime Tracking Project of CEA(No.2019010127)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901006)
文摘In this study,on the basis of absolute first-arrival times of 84756 P-and S-waves from 6085 earthquakes recorded at 56 fixed stations in Yibin and surrounding areas in China from January 2009 to January 2019,focal parameters and three-dimensional(3 D)body-wave high-resolution velocity structures at depths of 0–30 km were retrieved by double-difference tomography.Results show that there is a good correspondence between the spatial distribution of the relocated earthquakes and velocity structures,which were concentrated mainly in the high-velocity-anomaly region or edge of high-velocity region.Velocity structure of P-and S-waves in the Yibin area clearly shows lateral inhomogeneity.The distribution characteristics of the P-and S-waves near the surface are closely related to the geomorphology and geologic structure.The low-velocity anomaly appears at the depth of 15–25 km,which is affected by the lower crust current.The Junlian–Gongxian and Gongxian–Changning earthquake areas,which are the two most earthquake-prone areas in the Yibin region,clearly differ in earthquake distribution and tectonic characteristics.We analyzed the structural characteristics of the Junlian–Gongxian and Gongxian–Changning earthquake areas on the basis of the 3 D bodywave velocity structures in the Yibin region.We found that although most seismicity in the Yibin area is caused by fluid injection,the spatial position of seismicity is controlled by the velocity structures of the middle and upper crust and local geologic structure.Fine-scale 3 D velocity structures in the Yibin area provide important local reference information for further understanding the crustal medium,seismogenic structure,and seismicity.
文摘Young′s Modulus of concrete is studied on the basis of triaxial compressive experiments. The authors proposed two empirical equations to calculate its static Young′s modulus and dynamic Young′s modulus when dynamic Poisson ratio μ d varies nearby 0.20.P wave velocity and elastic modulus have the same varying tendency as letter N. μ,μ d decrease with the increase of loading rate and μ d has a great effect on the parameters E d and E D.
基金SUPPORTED BY NATIONAL NATURAL SCIENCE FOUNDATION FOR DISTINGUISHED YOUNG SCHOLARS OF CHINA (NO. 50425824).
文摘The influence of the dispersion and uncertainty of the dynamic shear wave velocity and Poisson's ratio of soil in a hard rock site was investigated on the seismic response of reactor building structure. The analysis is performed by considering the soil-structure interaction effects and based on the model of the reactor building in a typical pressurized water reactor nuclear power plant (NPP). The numerical results show that for the typical floor selected, while the relative increment ratio of the dynamic shear wave velocity varies from -30% to 30% compared to the basis of 1 930 m/s, the relative variation of the horizontal response spectra peak value lies in the scope of ±10% for the internal structure, and the relative variation of the frequency corresponding to the spectra peak is 0.0% in most cases. The relative variation of the vertical response spectra peak value lies in the scope of - 10% to 22%, and the relative variation of the frequency corresponding to the Spectra peak lies in the scope of - 22% to 4%. The analysis indicates that the dynamic shear wave velocity and the Poisson's ratio of the rock would affect the seismic response of structure and the soil-structure interaction effects should be considered in seismic analysis and design of NPP even for a hard rock site.
文摘P-wave and S-wave velocities were obtained from seismic refraction survey in the foundation layer of Eket, the study area. The Tezcan’s approach discussed extensively in the work was used in conjunction with the existing mathematical relations between elastic parameters and seismic refraction velocities for the study of foundation layers in the study area. Based on the results, the elastic constants, allowable bearing pressure/capacity, ultimate bearing capacity and other parameters in Table 1 were determined. The result shows that allowable bearing pressure increases with increase in shear modulus and shear wave velocity. The empirical relation between allowable bearing capacity and shear modulus shows that the allowable bearing capacity increases with depth. Comparing our findings with some ranges of safe allowable bearing capacities of similar non cohesive/granular soils in literatures, the second layer with allowable bearing capacity range of 72.56 - 206.63 kN·m-2?(average = 154.78 kN·m-2) has been considered to be the safe shallow engineering foundation in the study area. The empirical relations between allowable bearing capacities shear modulus and shear wave velocity, in conjunction with the inferred maps, which serve as our findings, will be used as guide in the location of foundations. The inferred ultimate and allowable capacities correlate maximally for the two shallow foundations penetrated by the seismic waves. This perfect correlation reflects the uniqueness of the method.
基金suppurted by the Nathural Sciencc Foundation of Yunnan Province(Grant No.2002D0007M}the N ational Natural Science Fuundation of China(Grant No.40274030).
文摘Receiver function of body wave under the 23 stations in Yunnan was extracted from 3-component broadband digital recording of teleseismic event. Thus, the S-wave velocity structure and distribution characteristics of Poisson's ratio in crust of Yunnan are obtained by inversion. The results show that the crustal thickness is gradually thinned from north to south. The crustal thickness in Zhongdian of northwest reaches as many as 62.0 km and the one in Jinghong of further south end is only 30.2 km. What should be especially noted is that there exists a Moho upheaval running in NS in the Chuxiong region and a Moho concave is generally parallel to it in Dongchuan. In addition, there exists an obvious transversal inhomogeneity for the S-wave velocity structure in upper mantle and crust in the Yunnan region. The low velocity layer exists not only in 10.0-15.0 km in upper crust in some regions, but also in 30.0-40.0 km in lower crust. Generally, the Poisson's ratio is on the high side, however it has a better corresponding relation to the crustal velocity structure. An obvious block distribution feature is still shown on such a high background of Poisson's ratio. It is discovered by synthetically analyzing the velocity structure and Poisson's ratio distribution that there are high Poisson's ratio and complicated crust-mantle velocity structure feature in the Sichuan-Yunnan Diamond Block with Xiaojiang fault to be the east boundary and Yulong Snow Mountain fault to be the west boundary besides the frequent seismicity. This feature differs obviously from that of surrounding areas, which would provide geophysical evidence to deeply study the eastwardly flowage of lithospheric substances in the Qinghai-Tibet Plateau.