Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume e...This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.展开更多
On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its le...On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its left eigenmatrix any longer. On the other hand, eigenmatrix plays an important role in model identification, which is the basis of the identification of aerodynamic derivatives. In this study, we follow Scanlan’s simple bridge model and utilize the information provided by the left and right eigenmatrixes to structure a self-contained eigenvector algorithm in the frequency domain. For the purpose of fitting more accurate transfer function, the study adopts the combined sine-wave stimulation method in the numerical simulation. And from the simulation results, we can conclude that the derivatives identified by the self-contained eigenvector algorithm are more dependable.展开更多
Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges.Based on the dynamic characteristics of suspension bridges...Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges.Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m,we proposed fitted equations for increasing spans and base frequencies.Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed.The structural parameters were optimized to follow the fitted tendencies.To analyze the aerodynamic instability,streamlined single-box section(SBS),lattice truss section(LTS),narrow slotted section(NSS),and wide slotted section(WSS)were considered.We performed three-dimensional(3-D)full-mode flutter analysis and nonlinear aerostatic instability analysis.The flutter critical wind speed continuously decreases with span growth,showing an unlimited approaching phenomenon.Regarding aerostatic instability,the instability wind speed decreases with span to approximately 3000 m,and increases when the span is in the range of 3000 to 5000 m.Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed,indicating the probability of aerostatic instability.This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter,and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.展开更多
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
文摘This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.
基金supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11032009)the National Natural Science Foundation of China (Grant No. 10772048)
文摘On one hand, when the bridge stays in a windy environment, the aerodynamic power would reduce it to act as a non-classic system. Consequently, the transposition of the system’s right eigenmatrix will not equal its left eigenmatrix any longer. On the other hand, eigenmatrix plays an important role in model identification, which is the basis of the identification of aerodynamic derivatives. In this study, we follow Scanlan’s simple bridge model and utilize the information provided by the left and right eigenmatrixes to structure a self-contained eigenvector algorithm in the frequency domain. For the purpose of fitting more accurate transfer function, the study adopts the combined sine-wave stimulation method in the numerical simulation. And from the simulation results, we can conclude that the derivatives identified by the self-contained eigenvector algorithm are more dependable.
基金support of National Key R&D Program of China(No.2022YFC3004105)National Natural Science Foundation of China(Grant Nos.52078383,52008314,52108469).
文摘Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges.Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m,we proposed fitted equations for increasing spans and base frequencies.Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed.The structural parameters were optimized to follow the fitted tendencies.To analyze the aerodynamic instability,streamlined single-box section(SBS),lattice truss section(LTS),narrow slotted section(NSS),and wide slotted section(WSS)were considered.We performed three-dimensional(3-D)full-mode flutter analysis and nonlinear aerostatic instability analysis.The flutter critical wind speed continuously decreases with span growth,showing an unlimited approaching phenomenon.Regarding aerostatic instability,the instability wind speed decreases with span to approximately 3000 m,and increases when the span is in the range of 3000 to 5000 m.Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed,indicating the probability of aerostatic instability.This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter,and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.