This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers t...The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.展开更多
As for the assembly line of cost control of Toyota company in, the motor housing also needs cost control. Because the supply quantity of small motor is very large every month, the production line is needed to solve th...As for the assembly line of cost control of Toyota company in, the motor housing also needs cost control. Because the supply quantity of small motor is very large every month, the production line is needed to solve this problem. In addition to the control of equipment, personnel quantities and wages, the introduction of raw materials also needs to be controlled. Only in this way can we fundamentally solve the problem of high cost and low profit.展开更多
In the present paper, cost control existing in stages of decision making, drawing design, construction bidding, construction, completion settlement, product sales of real estate development are analyzed and solutions ...In the present paper, cost control existing in stages of decision making, drawing design, construction bidding, construction, completion settlement, product sales of real estate development are analyzed and solutions for cost control in each stage are provided.展开更多
Extractive distillation is an effective method for separating azeotropic or close boiling point mixtures by adding a third component.Various technologies for performing the extractive distillation process have been ex...Extractive distillation is an effective method for separating azeotropic or close boiling point mixtures by adding a third component.Various technologies for performing the extractive distillation process have been explored to protect the environment and save resources.This paper focuses on the improvement of these advanced technologies in recent years.Extractive distillation is retrieved and analyzed from the view of phase equilibrium,selection of solvent in extractive distillation,process design,energy conservation,and dynamic control.The quantitative structure–property relationship used in extractive distillation is discussed,and the future development of extractive distillation is proposed to determine how the solvent affects the relative volatility of the separated mixture.In the steady state design,the relationship between the curvature of the residue curve and parameters of the optimal steady state is also highlighted as another field worthy of further study to simplify the distillation process.展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The p...This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.展开更多
In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by un...In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.展开更多
In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the re...In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the reactive section is explored based on a hypothetical ideal reactive distillation system containing an exothermic reaction:A + BC + D.Steady state operation analysis and closed-loop controllability evaluation are carried out by comparing the process designs with and without the consideration of internal heat integration.For superposing reactive section onto stripping section,favorable effect is aroused due to its low sensitivities to the changes in operating condition.For ascending the lower feed stage,somewhat detrimental effect occurs because of the accompanied adverse internal heat integration and strong sensitivity to the changes in operating condition.For descending the upper feed stage,serious detrimental effect happens because of the introduced adverse internal heat integration and strong sensitivity to the changes in operating condition.For redistributing catalyst in the reactive section,fairly small negative influence is aroused by the sensitivity to the changes in operating condition.When reinforcing internal heat integration with a combinatorial use of these three strategies,the decent of the upper feed stage should be avoided in process development.Although the conclusions are derived based on the hypothetical ideal reactive distillation column studied,they are considered to be of general significance to the design and operation of other reactive distillation columns.展开更多
The rapid economic development has promoted the construction of infrastructure,such as highways and water conservancy projects.The establishment of highways has facilitated people's lives and made the distance bet...The rapid economic development has promoted the construction of infrastructure,such as highways and water conservancy projects.The establishment of highways has facilitated people's lives and made the distance between regions shorter and shorter.However,the construction of highway engineering is a big project,which not only has a long cycle,but also has a high economic cost.During the construction process,a large number of construction materials and personnel will be applied.If the project cost management is not implemented for the highway construction,it will easily affect the final quality and profit of the entire project.This article expounds the significance of dynamic management and control of highway engineering cost,and analyzes the strategy of dynamic management and control of highway engineering cost.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s...Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
In this paper, the mixture of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate was separated by middle-vessel batch distillation with feeding in middle-vessel and process control characteristics were r...In this paper, the mixture of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate was separated by middle-vessel batch distillation with feeding in middle-vessel and process control characteristics were researched. The steady state simulation results in Aspen Plus were exported to Aspen Dynamics. Then control effect of liquid level control with HighSelector, composition control(structure1, structure2) and temperature control(proportional action, proportional integration action) were proposed. Composition control structure 2 and temperature control with PI action were investigated to achieve a good control effect.展开更多
Product quality and operation cost control obtain increasing emphases in modern chemical system engineering. To improve the fault detection power of the partial least square (PLS) method for quality control, a new QRP...Product quality and operation cost control obtain increasing emphases in modern chemical system engineering. To improve the fault detection power of the partial least square (PLS) method for quality control, a new QRPV statistic is proposed in terms of the VP (variable importance in projection) indices of monitored process variables, which is significantly advanced over and different from the conventional Q statistic. QRPV is calculated only by the residuals of the remarkable process variables (RPVs). Therefore, it is the dominant relation between quality and RPV not all process variables (as in the case of the conventional PLS) that is monitored by this new VP-PLS (VPLS) method. The combination of QRPV and T2 statistics is applied to the quality and cost control of the Tennessee Eastman (TE) process, and weak faults can be detected as quickly as possible. Consequently, the product quality of TE process is guaranteed and operation costs are reduced.展开更多
On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed wit...On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.展开更多
In software development life cycle, Software Process Management (SPM) acts as a significant part throughout the execution of project. In this study, the application of control chart for analyzing the stability of soft...In software development life cycle, Software Process Management (SPM) acts as a significant part throughout the execution of project. In this study, the application of control chart for analyzing the stability of software process and defects in the software product is discussed. This paper will discuss the analyzing impact or collision of rework effort, defect density, inspection performance and productivity by using control charts. This paper also explains the benefits and challenges of using control charts in software organization.展开更多
The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our prev...The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.展开更多
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
文摘The simulation of a control system for the longitudinal axis of the rotary or fixed-wing unmanned aerial vehicles(UAVs)is demonstrated in this study.The control unit includes design considerations of two controllers to provide robust stability,tracking of the proposed linear dynamics,an adequate set of proportional-integral-derivative(PID)controller gains,and a minimal cost function.The PID control and linear quadratic regulator(LQR)with or without full-state-observer were evaluated.An optimal control system is assumed to provide fast rise and settling time,minimize overshoot,and eliminate the steady-state error.The effectiveness of this approach was verified by a linear model of the UAV aircraft in the semi-dynamic simulation platform of Matlab/Simulink,in which the open-loop system was assessed in terms of flight robustness and reference tracking.The experimental results show that the proposed controllers effectively improve the configuration of the control system of the plant,maintain the sustainability of the dynamic flight model stability,and diminish the flight controller errors.The LQR provides robust stability,but it is not optimal in the transient phase of particular plant output.The PID control system can adjust the controller’s gains for optimal hovering(or stable slow flight)and is especially useful for the tracking system.Finally,comparing aircraft stability using PID and LQR controllers shows that the latter has less overshoot and a shorter settling time;in addition,all proposed controllers can be practically deployed as one UAV’s system,which can be handled as an exemplary model of the UAV flight management system.
文摘As for the assembly line of cost control of Toyota company in, the motor housing also needs cost control. Because the supply quantity of small motor is very large every month, the production line is needed to solve this problem. In addition to the control of equipment, personnel quantities and wages, the introduction of raw materials also needs to be controlled. Only in this way can we fundamentally solve the problem of high cost and low profit.
文摘In the present paper, cost control existing in stages of decision making, drawing design, construction bidding, construction, completion settlement, product sales of real estate development are analyzed and solutions for cost control in each stage are provided.
基金Supported by the National Natural Science Foundation of China(21676152)
文摘Extractive distillation is an effective method for separating azeotropic or close boiling point mixtures by adding a third component.Various technologies for performing the extractive distillation process have been explored to protect the environment and save resources.This paper focuses on the improvement of these advanced technologies in recent years.Extractive distillation is retrieved and analyzed from the view of phase equilibrium,selection of solvent in extractive distillation,process design,energy conservation,and dynamic control.The quantitative structure–property relationship used in extractive distillation is discussed,and the future development of extractive distillation is proposed to determine how the solvent affects the relative volatility of the separated mixture.In the steady state design,the relationship between the curvature of the residue curve and parameters of the optimal steady state is also highlighted as another field worthy of further study to simplify the distillation process.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
文摘This article explores controllable Borel spaces, stationary, homogeneous Markov processes, discrete time with infinite horizon, with bounded cost functions and using the expected total discounted cost criterion. The problem of the estimation of stability for this type of process is set. The central objective is to obtain a bounded stability index expressed in terms of the Lévy-Prokhorov metric;likewise, sufficient conditions are provided for the existence of such inequalities.
基金Supported by The National Natural Science Foundation of China(21076015,21376018,and 21576014)The Fundamental Research Funds for the Central Universities(ZY1503)
文摘In this work,the dynamics and operation of the totally reboiled reactive distillation columns are visualized in terms of transfer function based process models.This kind of processes is found to be characterized by underdamped step responses due to the special topological configuration and the intricate interplay between the reaction operation and the separation operation involved.The under-dampness can be substantially alleviated through the tight inventory control of bottom reboiler and this presents beneficial effects to process dynamics and operation.Two totally reboiled reactive distillation columns,separating,respectively,a hypothetical synthesis reaction from reactants A and B to product C,and a real decomposition reaction from 1,4-butanediol to tetrahydrofuran and water,are employed to demonstrate these uncommon behaviors.The results obtained give full support to the above qualitative interpretation.Despite the strong influences of reaction kinetics and thermodynamic properties of the reacting mixtures,the totally reboiled reactive distillation columns are generally considered to present such unique behaviors and require tight inventory control of bottom reboiler to facilitate their control system development.
基金Supported by the National Natural Science Foundation of China(21076015,21376018,21576014)the Fundamental Research Funds for the Central Universities(ZY1503)
文摘In this work,the impact of internal heat integration upon process dynamics and controllability by superposing reactive section onto stripping section,relocating feed locations,and redistributing catalyst within the reactive section is explored based on a hypothetical ideal reactive distillation system containing an exothermic reaction:A + BC + D.Steady state operation analysis and closed-loop controllability evaluation are carried out by comparing the process designs with and without the consideration of internal heat integration.For superposing reactive section onto stripping section,favorable effect is aroused due to its low sensitivities to the changes in operating condition.For ascending the lower feed stage,somewhat detrimental effect occurs because of the accompanied adverse internal heat integration and strong sensitivity to the changes in operating condition.For descending the upper feed stage,serious detrimental effect happens because of the introduced adverse internal heat integration and strong sensitivity to the changes in operating condition.For redistributing catalyst in the reactive section,fairly small negative influence is aroused by the sensitivity to the changes in operating condition.When reinforcing internal heat integration with a combinatorial use of these three strategies,the decent of the upper feed stage should be avoided in process development.Although the conclusions are derived based on the hypothetical ideal reactive distillation column studied,they are considered to be of general significance to the design and operation of other reactive distillation columns.
文摘The rapid economic development has promoted the construction of infrastructure,such as highways and water conservancy projects.The establishment of highways has facilitated people's lives and made the distance between regions shorter and shorter.However,the construction of highway engineering is a big project,which not only has a long cycle,but also has a high economic cost.During the construction process,a large number of construction materials and personnel will be applied.If the project cost management is not implemented for the highway construction,it will easily affect the final quality and profit of the entire project.This article expounds the significance of dynamic management and control of highway engineering cost,and analyzes the strategy of dynamic management and control of highway engineering cost.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金National Natural Foundation of China (No.60421002, No.70471052)
文摘Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
基金Supported by the National Natural Science Foundation of China(21676299,21476261,21506255)
文摘In this paper, the mixture of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate was separated by middle-vessel batch distillation with feeding in middle-vessel and process control characteristics were researched. The steady state simulation results in Aspen Plus were exported to Aspen Dynamics. Then control effect of liquid level control with HighSelector, composition control(structure1, structure2) and temperature control(proportional action, proportional integration action) were proposed. Composition control structure 2 and temperature control with PI action were investigated to achieve a good control effect.
文摘Product quality and operation cost control obtain increasing emphases in modern chemical system engineering. To improve the fault detection power of the partial least square (PLS) method for quality control, a new QRPV statistic is proposed in terms of the VP (variable importance in projection) indices of monitored process variables, which is significantly advanced over and different from the conventional Q statistic. QRPV is calculated only by the residuals of the remarkable process variables (RPVs). Therefore, it is the dominant relation between quality and RPV not all process variables (as in the case of the conventional PLS) that is monitored by this new VP-PLS (VPLS) method. The combination of QRPV and T2 statistics is applied to the quality and cost control of the Tennessee Eastman (TE) process, and weak faults can be detected as quickly as possible. Consequently, the product quality of TE process is guaranteed and operation costs are reduced.
基金Supported by the 863 Programof China (2001AA242111)
文摘On the basis of analysis the governing process of downstream water level gates AVIO and AVIS, a mathematical model for simulation of dynamic operation process of hydraulically automated irrigation canals instalIed with AVIO and AVIS gates is presented, the main point of this rnathematical model is firstly applying a set of unsteady flow equations (St. Venant equations here) and treating the condition of gate movement as its dynamic boundary, and then deeoupling this interaction of gate movement with the change of canal flow. In this process, it is necessary to give the gateg open-loop transfer function whose input is water level deviation and output is gate discharge. The result of this simulation for a practical reach has shown it has satisfactory accuracy.
文摘In software development life cycle, Software Process Management (SPM) acts as a significant part throughout the execution of project. In this study, the application of control chart for analyzing the stability of software process and defects in the software product is discussed. This paper will discuss the analyzing impact or collision of rework effort, defect density, inspection performance and productivity by using control charts. This paper also explains the benefits and challenges of using control charts in software organization.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202)+2 种基金the Shanghai Second Polytechnic University Key Discipline Construction(4th term)-Control Theory&Control Engineering(XXKPY1308)the Cultivation Program of Young Teachers in Colleges and Universities of Shanghai(ZZegdl4013)the School Foundation of Shanghai Second Polytechnic University(EGD14XQD02)
文摘The p-xylene(PX) oxidation process is of great industrial importance because of the strong demand of the global polyester fiber.A steady-state model of the PX oxidation has been studied by many researchers.In our previous work,a novel industrial p-xylene oxidation reactor model using the free radical mechanism based kinetics has been developed.However,the disturbances such as production rate change,feed composition variability and reactor temperature changes widely exist in the industry process.In this paper,dynamic simulation of the PX oxidation reactor was designed by Aspen Dynamics and used to develop an effective plantwide control structure,which was capable of effectively handling the disturbances in the load and the temperature of the reactor.Step responses of the control structure to the disturbances were shown and served as the foundation of the smooth operation and advanced control strategy of this process in our future work.