In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated qui...In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.展开更多
A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which wa...With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which was a remote possibility some decades before. Achieving this level of observability puts us at an advantage of responding to the system faults with reduced response time, and helps in restoring the grid stability within fraction of second. This paper demonstrates the detailed fault characterization from the PMU inputs, after illustrations from various real-time examples and different faults occurred in India. This paper tries to shed some light on areas where the accurate fault characterization can help the operator in taking the right decision for reliable grid operations.展开更多
The paper provides a short history of the phasor measurement unit(PMU) concept. The origin of PMU is traced to the work on developing computer based distance relay using symmetrical component theory. PMUs evolved from...The paper provides a short history of the phasor measurement unit(PMU) concept. The origin of PMU is traced to the work on developing computer based distance relay using symmetrical component theory. PMUs evolved from a portion of this relay architecture. The need for synchronization using global positioning system(GPS) is discussed, and the wide area measurement system(WAMS) utilizing PMU signals is described. A number of applications of this technology are discussed, and an account of WAMS activities in many countries around the world are provided.展开更多
文摘In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.
文摘With the advent of phasor measurement unit (PMU) technology, the grid observability has got a new dimension. This facet of technology helps in getting the real-time and dynamic scenario of the grid operations which was a remote possibility some decades before. Achieving this level of observability puts us at an advantage of responding to the system faults with reduced response time, and helps in restoring the grid stability within fraction of second. This paper demonstrates the detailed fault characterization from the PMU inputs, after illustrations from various real-time examples and different faults occurred in India. This paper tries to shed some light on areas where the accurate fault characterization can help the operator in taking the right decision for reliable grid operations.
文摘The paper provides a short history of the phasor measurement unit(PMU) concept. The origin of PMU is traced to the work on developing computer based distance relay using symmetrical component theory. PMUs evolved from a portion of this relay architecture. The need for synchronization using global positioning system(GPS) is discussed, and the wide area measurement system(WAMS) utilizing PMU signals is described. A number of applications of this technology are discussed, and an account of WAMS activities in many countries around the world are provided.