Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a...Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.展开更多
In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the compl...In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.展开更多
In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler con...In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction:展开更多
Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems....Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki...In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki contraction in such spaces. Around our paper, the function <i>ψ</i> is absolutely continuous, and in this case, the contraction proposed by as has a fixed point.展开更多
Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elemen...Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elements and solutions of abstract variational inequalities, and best approximation theorems are proved. These theorems improve and generalize a number of known results in recent literature.展开更多
In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existe...In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.展开更多
Some new coincidence theorem s involving a new class of set_valued mappings containing composites of acyclic mappings defined in a contractible space are proved. For applications, some best approximation theorems an...Some new coincidence theorem s involving a new class of set_valued mappings containing composites of acyclic mappings defined in a contractible space are proved. For applications, some best approximation theorems and coincidence theorems for set-valued mappings are als o given. A number of known results in recent literature are improved and general ized by the theorems in this paper.展开更多
In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi...In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.展开更多
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed ...This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.展开更多
In this paper, we continue to discuss the properties of iterates generated by a strict pseudo- contraction or a finite family of strict pseudo-contractions in a real q-uniformly smooth Banach space. The results presen...In this paper, we continue to discuss the properties of iterates generated by a strict pseudo- contraction or a finite family of strict pseudo-contractions in a real q-uniformly smooth Banach space. The results presented in this paper are interesting extensions and improvements upon those known ones of Marino and Xu [Marino, G., Xu, H. K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 324, 336-349 (2007)]. In order to get a strong convergence theorem, we modify the normal Mann's iterative algorithm by using a suitable convex combination of a fixed vector and a sequence in C. This result extends a recent result of Kim and Xu [Kim, T. H., Xu, H. K.: Strong convergence of modified Mann iterations. Nonl. Anal., 61, 51- 60 (2005)] both from nonexpansive mappings to λ-strict pseudo-contractions and from Hilbert spaces to q-uniformly smooth Banach spaces.展开更多
In this paper, it is shown that there is a gap in the paper [Chidume, C. E., Shahzad, N.: Weak convergence theorems for a finite family of strict pseudo-contractions. Nonlinear Anal., 72, 1257–1265(2010)], consequ...In this paper, it is shown that there is a gap in the paper [Chidume, C. E., Shahzad, N.: Weak convergence theorems for a finite family of strict pseudo-contractions. Nonlinear Anal., 72, 1257–1265(2010)], consequently, the main results of the paper do not hold in uniformly smooth Banach spaces. Meanwhile, it is also shown that the main results(Lemma 3.4, Theorems 3.5–3.6, 3.8–3.9) in the paper [Cholamjiak, P., Suantai, S.: Weak convergence theorems for a countable family of strict pseudo-contractions in Banach spaces. Fixed Point Theory Appl., 2010, Article ID 632137, 16 pages(2010)] do not hold in Lpfor p 〉 3. Finally, some modified results are presented in the setting of uniformly smooth and uniformly convex Banach spaces which include Lpfor p ≥ 2 as special cases. Furthermore, our arguments are also different from the ones given by the authors above.展开更多
文摘Any composition sequential mapping, periodic composition mapping of a complete non-empty metric space M into M with geometric mean contraction ratio less than 1 ( simplifying as 'g-contraction mapping' ) has a unique fixed point in M . Applications of the theorem to the proof of existence and uniqueness of the solutions of a set of non-linear differential equations and a coupled integral equations of symmetric bending of shallow shell of revolution are given.
文摘In this paper,we consider the fixed point theorem for Proinov mappings with a contractive iterate at a point.In other words,we combine and unify the basic approaches of Proinov and Sehgal in the framework of the complete metric spaces.We consider examples to illustrate the validity of the obtained result.
基金supported by Università degli Studi di Padermo,Local Project R.S.ex 60\char37
文摘In 2011, Berinde and Borcut [6] introduced the notion of tripled fixed point in partially ordered metric spaces. In our paper, we give some new tripled fixed point theorems by using a generalization of Meir-Keeler contraction:
文摘Fixed point theory is one of the most important subjects in the setting of metric spaces since fixed point theorems can be used to determine the existence and the uniqueness of solutions of such mathematical problems.It is known that many problems in applied sciences and engineering can be formulated as functional equations.Such equations can be transferred to fixed point theorems in an easy manner.Moreover,we use the fixed point theory to prove the existence and uniqueness of solutions of such integral and differential equations.Let X be a non-empty set.A fixed point for a self-mapping T on X is a point𝑒𝑒∈𝑋𝑋that satisfying T e=e.One of the most challenging problems in mathematics is to construct some iterations to faster the calculation or approximation of the fixed point of such problems.Some mathematicians constructed and generated some new iteration schemes to calculate or approximate the fixed point of such problems such as Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Berinde(2004b);Agarwal,O’Regan and Sahu(2007)].The main purpose of the present paper is to introduce and construct a new iteration scheme to calculate or approximate the fixed point within a fewer number of steps as much as we can.We prove that our iteration scheme is faster than the iteration schemes given by Sintunavarat et al.[Sintunavarat and Pitea(2016);Agarwal,O’Regan and Sahu(2007);Mann(1953);Ishikawa(1974)].We give some numerical examples by using MATLAB to compare the efficiency and effectiveness of our iterations scheme with the efficiency of Mann et al.[Mann(1953);Ishikawa(1974);Sintunavarat and Pitea(2016);Abbas and Nazir(2014);Agarwal,O’Regan and Sahu(2007)]schemes.Moreover,we introduce a problem raised from Newton’s law of cooling as an application of our new iteration scheme.Also,we support our application with a numerical example and figures to illustrate the validity of our iterative scheme.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
文摘In this work we try to give a new contraction type in multi-valued mapping on complete metric spaces. We prove the existence of fixed point for (<i>r</i>,<i>φ</i>,<i>ψ</i>)-Suzuki contraction in such spaces. Around our paper, the function <i>ψ</i> is absolutely continuous, and in this case, the contraction proposed by as has a fixed point.
文摘Some new coincidence theorems involving a new class of set-valued mappingscontaining composites of acyclic mappings defined on a contractible space are proved.As applications, some existence theorems of maximal elements and solutions of abstract variational inequalities, and best approximation theorems are proved. These theorems improve and generalize a number of known results in recent literature.
基金Supported by the National Natural Science Foundation of China (10761007)
文摘In this paper, we define the topological degree for 1-set-contractive fields in PN spaces. Based on this, we obtain some new fixed point theorems for 1-set-contractive operators. As an application, we study the existence of solutions for a kind of nonlinear Volterra integral equations in Z-M-PN space.
文摘Some new coincidence theorem s involving a new class of set_valued mappings containing composites of acyclic mappings defined in a contractible space are proved. For applications, some best approximation theorems and coincidence theorems for set-valued mappings are als o given. A number of known results in recent literature are improved and general ized by the theorems in this paper.
文摘In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.
文摘This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
基金Supported by National Natural Science Foundation of China (Grant No. 10771050)
文摘In this paper, we continue to discuss the properties of iterates generated by a strict pseudo- contraction or a finite family of strict pseudo-contractions in a real q-uniformly smooth Banach space. The results presented in this paper are interesting extensions and improvements upon those known ones of Marino and Xu [Marino, G., Xu, H. K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 324, 336-349 (2007)]. In order to get a strong convergence theorem, we modify the normal Mann's iterative algorithm by using a suitable convex combination of a fixed vector and a sequence in C. This result extends a recent result of Kim and Xu [Kim, T. H., Xu, H. K.: Strong convergence of modified Mann iterations. Nonl. Anal., 61, 51- 60 (2005)] both from nonexpansive mappings to λ-strict pseudo-contractions and from Hilbert spaces to q-uniformly smooth Banach spaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.10771050,11071053)
文摘In this paper, it is shown that there is a gap in the paper [Chidume, C. E., Shahzad, N.: Weak convergence theorems for a finite family of strict pseudo-contractions. Nonlinear Anal., 72, 1257–1265(2010)], consequently, the main results of the paper do not hold in uniformly smooth Banach spaces. Meanwhile, it is also shown that the main results(Lemma 3.4, Theorems 3.5–3.6, 3.8–3.9) in the paper [Cholamjiak, P., Suantai, S.: Weak convergence theorems for a countable family of strict pseudo-contractions in Banach spaces. Fixed Point Theory Appl., 2010, Article ID 632137, 16 pages(2010)] do not hold in Lpfor p 〉 3. Finally, some modified results are presented in the setting of uniformly smooth and uniformly convex Banach spaces which include Lpfor p ≥ 2 as special cases. Furthermore, our arguments are also different from the ones given by the authors above.