Based on crystallographic theory, there are 63 kinds of polytypes of 13H long-period stacking order (LPSO) structure, 126 kinds of polytypes of 14H LPSO structure, 120 kinds of polytypes of 39R LPSO structure, and 2...Based on crystallographic theory, there are 63 kinds of polytypes of 13H long-period stacking order (LPSO) structure, 126 kinds of polytypes of 14H LPSO structure, 120 kinds of polytypes of 39R LPSO structure, and 223 kinds of polytypes of 42R LPSO structure in a hexagonal close-packed (HCP) system, and their stacking sequences and space groups have been derived in detail. The result provides a theoretical explanation for the various polytypes of the LPSO structure.展开更多
At present, the Topographic Index Model (TOPMODEL) has been recommended for integration in Land Surface Models (LSMs). But, the applicable scope of the original TOPMODEL (OTOP) is limited because the OTOP deriva...At present, the Topographic Index Model (TOPMODEL) has been recommended for integration in Land Surface Models (LSMs). But, the applicable scope of the original TOPMODEL (OTOP) is limited because the OTOP derivation relies on three fundamental but unrealistic assumptions. In this paper, several versions of a generalized TOPMODEL (GTOP), which relax some unrealistic assumptions involved in OTOP, are presented, and the theoretical derivationsn to obtain these modifications are demonstrated in detail. Specifically, the extension for the OTOP applicability comes down to following three basic cases: (1) Give up the assumption of spatially uniform recharge rate to the groundwater and let the rate be spatially varying, (2) Keep same original exponential distribution profile of hydraulic conductivity used in OTOP but change the saturated hydraulic conductivity and effective soil depth from spatial constants in OTOP to spatially variable quantities; and (3) Extend the original exponential distribution profile of hydraulic conductivity to more general power law distribution profile of hydraulic conductivity together with spatially variable saturated hydraulic conductivity and effective soil depth. Finally, a brief numerical sensitivity study based on one version of GTOP using an exponential distribution profile for soil hydraulic conductivity is conducted. This shows the heterogeneous effects of the effective soil depth, saturated hydraulic conductivity, at ground surface and groundwater recharge rate on hydrological processes and serves as an example application of GTOP to a heterogeneous catchment.展开更多
Due to the conceptual clarity and calculational simplicity, practical methods for seismic analysis have been widely used in seismic design and calculation of underground structures. All of the commonly adopted practic...Due to the conceptual clarity and calculational simplicity, practical methods for seismic analysis have been widely used in seismic design and calculation of underground structures. All of the commonly adopted practical methods assume that the earthquake inertia force of the analysis model equals that of free-field. However, this assumption neglects the influence of underground structures on their surrounding soil layers, and may lead to significant errors in both conceptual and computational terms when the size of a structure increases. This article focuses on the practical seismic analysis of large underground structures.Theoretical derivation is demonstrated on the basis of the establishment of mechanical models of the soil-structure system and free-field, and consequently, the quantitative relation between the seismic acceleration response of the soil-structure system and that of free-field is obtained. This relation can be used to revise the earthquake inertia force applied to the analysis model so that the calculation accuracy is effectively improved. By doing so, a revised pushover analysis method, which combines the traditional pushover analysis and theoretical derivation, is proposed in order to be appropriate to seismic analysis of large underground structures. Moreover, an example of application of the proposed method is given, in which a selected large underground structure is analyzed. The results show that this revised method has higher efficiency than the traditional method thanks to the revision of the earthquake inertia force.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51371130,51171130,and 51271134)the Fundamental Research Funds for the Central Universities,Chinathe Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory,Central South University,China
文摘Based on crystallographic theory, there are 63 kinds of polytypes of 13H long-period stacking order (LPSO) structure, 126 kinds of polytypes of 14H LPSO structure, 120 kinds of polytypes of 39R LPSO structure, and 223 kinds of polytypes of 42R LPSO structure in a hexagonal close-packed (HCP) system, and their stacking sequences and space groups have been derived in detail. The result provides a theoretical explanation for the various polytypes of the LPSO structure.
基金supported by National Natural Science Foundation of China (Grant Nos.40235043 and 40605024)the Natural Science Foundation of Shandong Province (Grant No. Q2005E01)
文摘At present, the Topographic Index Model (TOPMODEL) has been recommended for integration in Land Surface Models (LSMs). But, the applicable scope of the original TOPMODEL (OTOP) is limited because the OTOP derivation relies on three fundamental but unrealistic assumptions. In this paper, several versions of a generalized TOPMODEL (GTOP), which relax some unrealistic assumptions involved in OTOP, are presented, and the theoretical derivationsn to obtain these modifications are demonstrated in detail. Specifically, the extension for the OTOP applicability comes down to following three basic cases: (1) Give up the assumption of spatially uniform recharge rate to the groundwater and let the rate be spatially varying, (2) Keep same original exponential distribution profile of hydraulic conductivity used in OTOP but change the saturated hydraulic conductivity and effective soil depth from spatial constants in OTOP to spatially variable quantities; and (3) Extend the original exponential distribution profile of hydraulic conductivity to more general power law distribution profile of hydraulic conductivity together with spatially variable saturated hydraulic conductivity and effective soil depth. Finally, a brief numerical sensitivity study based on one version of GTOP using an exponential distribution profile for soil hydraulic conductivity is conducted. This shows the heterogeneous effects of the effective soil depth, saturated hydraulic conductivity, at ground surface and groundwater recharge rate on hydrological processes and serves as an example application of GTOP to a heterogeneous catchment.
基金supported by the National Natural Science Foundation of China(Grant No.51478247)the National Basic Research Program of China(Grant No.2011CB013602)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91215301)
文摘Due to the conceptual clarity and calculational simplicity, practical methods for seismic analysis have been widely used in seismic design and calculation of underground structures. All of the commonly adopted practical methods assume that the earthquake inertia force of the analysis model equals that of free-field. However, this assumption neglects the influence of underground structures on their surrounding soil layers, and may lead to significant errors in both conceptual and computational terms when the size of a structure increases. This article focuses on the practical seismic analysis of large underground structures.Theoretical derivation is demonstrated on the basis of the establishment of mechanical models of the soil-structure system and free-field, and consequently, the quantitative relation between the seismic acceleration response of the soil-structure system and that of free-field is obtained. This relation can be used to revise the earthquake inertia force applied to the analysis model so that the calculation accuracy is effectively improved. By doing so, a revised pushover analysis method, which combines the traditional pushover analysis and theoretical derivation, is proposed in order to be appropriate to seismic analysis of large underground structures. Moreover, an example of application of the proposed method is given, in which a selected large underground structure is analyzed. The results show that this revised method has higher efficiency than the traditional method thanks to the revision of the earthquake inertia force.