This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for stud...This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.展开更多
We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons(APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density fun...We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons(APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density functional calculations. It is found that the atomic vacancies are easier to form and detain at the edge region rather than a random distribution through analyzing formation energy and diffusion barrier. The highly local defect states are generated at the vicinity of the Fermi level, and emerge a deep-to-shallow transformation as the width increases after introducing vacancies in APNRs.Moreover, the electrical transport of APNRs with vacancies is enhanced compared to that of the perfect counterparts. Our results provide a theoretical guidance for the further research and applications of PNRs through defect engineering.展开更多
A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calcul...A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calculated. By applying the Lee-Yang zeros method of equilibrium phase transitions, we study the distributions of the effective partition function zeros and obtain the same result for the model. Thus, the Lee-Yang theory can be applied to a more general non-equilibrium system.展开更多
This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the ...This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.展开更多
Lead nanowire occupies a very important position in an electronic device. In this study, a genetic algorithm(GA)method has been used to simulate the Pb nanowire. The result shows that Pb nanowires are a multishell c...Lead nanowire occupies a very important position in an electronic device. In this study, a genetic algorithm(GA)method has been used to simulate the Pb nanowire. The result shows that Pb nanowires are a multishell cylinder. Each shell consists of atomic rows wound up helically side by side. The quantum electron transport properties of these structures are calculated based on the non-equilibrium Green function(NEGF) combined with the density functional theory(DFT),which indicate that electronic transport ability increases gradually with the atomic number increase. In addition, the thickest nanowire shows excellent electron transport performance. It possesses great transmission at the Fermi level due to the strongest delocalization of the electronic state. The results provide valuable information on the relationship between the transport properties of nanowires and their diameter.展开更多
Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely sm...Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely small values of lo-cal field gradient ar展开更多
Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian ...Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian network theory in rubber elasticity to include the viscous and the thermal effects. A set of second rank tensorial internal variables was introduced, and in order to adequately describe the evolution of these internal variables, a new expression of the Helmholtz free energy was suggested. The mechanical behavior of the thermo-viscoelastic material under simple shear deformation was studied, and the “viscous dissipation induced” anisotropy due to the change of orientation distribution of molecular chains was examined. Influences of strain rate and thermal softening produced by the viscous dissipation on the shear stress were also discussed. Finally, the model predictions were compared with the experimental results performed by G'Sell et al., thus the validity of the proposed model is verified.展开更多
The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing the- oretical calculations using the nonequilibrium Green's function method combined with density fun...The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing the- oretical calculations using the nonequilibrium Green's function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance to- ward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided.展开更多
The imaginary part of the non-equilibrium magnetic susceptibility of Ising spin glass in a transverse field under time-dependent longitudinal external magnetic field has been calculated at very low temperature on the ...The imaginary part of the non-equilibrium magnetic susceptibility of Ising spin glass in a transverse field under time-dependent longitudinal external magnetic field has been calculated at very low temperature on the basis of quantum droplet model and quantum linear response theory. Quantum and aging effects on the low temperature dynamics of the model are discussed. A comparison with recent theoretical and experimental data in spin glass is made.展开更多
The persistence exponent <img src="Edit_8589f062-08af-48bf-9fa4-ea64e4f98789.png" alt="" /> for the simple diffusion equation <img src="Edit_8bd8b3b8-7f1f-4ea5-a5f5-c5ccc20288f4.png&q...The persistence exponent <img src="Edit_8589f062-08af-48bf-9fa4-ea64e4f98789.png" alt="" /> for the simple diffusion equation <img src="Edit_8bd8b3b8-7f1f-4ea5-a5f5-c5ccc20288f4.png" alt="" /> , with random Gaussian initial condition, has been calculated exactly using a method known as selective averaging. The probability that the value of the field <img src="Edit_cc47d602-457a-4e52-93d8-acc18dcaf933.png" alt="" /> at a specified spatial coordinate remains positive throughout for a certain time<em> t</em> behaves as <img src="Edit_aacdd656-f2c2-4cde-ba3c-1b32bf053b3b.png" alt="" /> for asymptotically large time <em>t</em>. The value of <img src="Edit_77272c69-2a19-4918-a183-7db96b262c7a.png" alt="" /> , calculated here for any integer dimension <em>d</em>, is <img src="Edit_bc64e52a-d6d0-4b63-8ef3-aa0f9d3c39cc.png" alt="" /> for <img src="Edit_becf7ae7-0ae4-43a6-9a41-017f25747517.png" alt="" /> and 1 otherwise. This exact theoretical result is being reported possibly for the first time and is not in agreement with the accepted values <img src="Edit_fbefbfcf-d76b-4eeb-a5f5-d8afda4a1a0c.png" alt="" /> for <img src="Edit_ec927d57-c273-40dd-8126-706443b57534.png" alt="" /> respectively.展开更多
In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodolo...In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.展开更多
In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(...In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.展开更多
文摘This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of microcrack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574080 and 91833302)。
文摘We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons(APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density functional calculations. It is found that the atomic vacancies are easier to form and detain at the edge region rather than a random distribution through analyzing formation energy and diffusion barrier. The highly local defect states are generated at the vicinity of the Fermi level, and emerge a deep-to-shallow transformation as the width increases after introducing vacancies in APNRs.Moreover, the electrical transport of APNRs with vacancies is enhanced compared to that of the perfect counterparts. Our results provide a theoretical guidance for the further research and applications of PNRs through defect engineering.
基金Project supported by the National Natural Science Foundation of China (Grant No 10175035)the Foundation for Outstanding Young Teacher of Ministry of Education of China
文摘A second-order dynamic phase transition in a non-equilibrium Eggers urn model for the separation of sand is studied. The order parameter, the susceptibility and the stationary probability distribution have been calculated. By applying the Lee-Yang zeros method of equilibrium phase transitions, we study the distributions of the effective partition function zeros and obtain the same result for the model. Thus, the Lee-Yang theory can be applied to a more general non-equilibrium system.
文摘This paper investigates theoretically the influence of magnetization on fatigue life by using non-equilibrium statistical theory of fatigue fracture for metals. The fatigue microcrack growth rate is obtained from the dynamic equation of microcrack growth, where the influence of magnetization is described by an additional term in the potential energy of microcrack. The statistical value of fatigue life of metal under magnetic field is derived, which is expressed in terms of magnetic field and macrophysical as well as microphysical quantities. The fatigue life of AISI 4140 steel in static magnetic field from this theory is basically consistent with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant No.51671114)the Special Funding in the Project of the Taishan Scholar Construction Engineering and National Key Research Program of China(Grant No.2016YFB0300501)
文摘Lead nanowire occupies a very important position in an electronic device. In this study, a genetic algorithm(GA)method has been used to simulate the Pb nanowire. The result shows that Pb nanowires are a multishell cylinder. Each shell consists of atomic rows wound up helically side by side. The quantum electron transport properties of these structures are calculated based on the non-equilibrium Green function(NEGF) combined with the density functional theory(DFT),which indicate that electronic transport ability increases gradually with the atomic number increase. In addition, the thickest nanowire shows excellent electron transport performance. It possesses great transmission at the Fermi level due to the strongest delocalization of the electronic state. The results provide valuable information on the relationship between the transport properties of nanowires and their diameter.
文摘Various fractal morphologies are obtained by introducing noise reduc-tion, tansential and radial probabilities into DLA (diffusion-limited aggregation)medel. As the noise is reduced, perimeter sites with extremely small values of lo-cal field gradient ar
文摘Based on the non-equilibrium thermodynamic theory, a new thermo-viscoelastic constitutive model for an incompressible material is proposed. This model can be considered as a kind of generalization of the non-Gaussian network theory in rubber elasticity to include the viscous and the thermal effects. A set of second rank tensorial internal variables was introduced, and in order to adequately describe the evolution of these internal variables, a new expression of the Helmholtz free energy was suggested. The mechanical behavior of the thermo-viscoelastic material under simple shear deformation was studied, and the “viscous dissipation induced” anisotropy due to the change of orientation distribution of molecular chains was examined. Influences of strain rate and thermal softening produced by the viscous dissipation on the shear stress were also discussed. Finally, the model predictions were compared with the experimental results performed by G'Sell et al., thus the validity of the proposed model is verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304079,11404094,and 51201059)the Priority Scientific and Technological Project of Henan Province,China(Grant No.14A140027)+1 种基金the School Fund(Grant No.2012BS055)the Plan of Natural Science Fundamental Research of Henan University of Technology,China(Grant No.2014JCYJ15)
文摘The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing the- oretical calculations using the nonequilibrium Green's function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance to- ward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided.
文摘The imaginary part of the non-equilibrium magnetic susceptibility of Ising spin glass in a transverse field under time-dependent longitudinal external magnetic field has been calculated at very low temperature on the basis of quantum droplet model and quantum linear response theory. Quantum and aging effects on the low temperature dynamics of the model are discussed. A comparison with recent theoretical and experimental data in spin glass is made.
文摘The persistence exponent <img src="Edit_8589f062-08af-48bf-9fa4-ea64e4f98789.png" alt="" /> for the simple diffusion equation <img src="Edit_8bd8b3b8-7f1f-4ea5-a5f5-c5ccc20288f4.png" alt="" /> , with random Gaussian initial condition, has been calculated exactly using a method known as selective averaging. The probability that the value of the field <img src="Edit_cc47d602-457a-4e52-93d8-acc18dcaf933.png" alt="" /> at a specified spatial coordinate remains positive throughout for a certain time<em> t</em> behaves as <img src="Edit_aacdd656-f2c2-4cde-ba3c-1b32bf053b3b.png" alt="" /> for asymptotically large time <em>t</em>. The value of <img src="Edit_77272c69-2a19-4918-a183-7db96b262c7a.png" alt="" /> , calculated here for any integer dimension <em>d</em>, is <img src="Edit_bc64e52a-d6d0-4b63-8ef3-aa0f9d3c39cc.png" alt="" /> for <img src="Edit_becf7ae7-0ae4-43a6-9a41-017f25747517.png" alt="" /> and 1 otherwise. This exact theoretical result is being reported possibly for the first time and is not in agreement with the accepted values <img src="Edit_fbefbfcf-d76b-4eeb-a5f5-d8afda4a1a0c.png" alt="" /> for <img src="Edit_ec927d57-c273-40dd-8126-706443b57534.png" alt="" /> respectively.
基金supported by the National Basic Research Program of China (2009CB226103, 2009CB219902)Swedish Research Councilgrateful to the support by the 363rd Session of Xiangshan Science Conferences, "Scientific Issues of Energy Conservation Mechanism for Waste-decreasing Process"
文摘In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.
文摘In present paper, the non-equilibrium Green function(NEGF) method along with the density functional theory(DFT) are used to investigate the effect of width on transport and electronic properties of armchair graphyne(γ-graphyne) nanoribbons. The results show that all the studied nanoribbons are semiconductor and their band gaps decrease as the widths of nanoribbons increase, which will result in increasing current at a certain voltage. Also our results show the promising application of armchair graphyne nanoribbons in nano-electrical devices.