By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is...By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolation process should be taken into consideration in the same time. Proper chemical admixtures and mineral cornpasitions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.展开更多
The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal ...The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.展开更多
Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times...Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.展开更多
Crystal energy, magnetoelastic energy,and magnetic field enersy all haveeffects on magnetic property of ferromagnetic material.With the purpose oftesting thermal stress in rails, this paper presented an analysis for t...Crystal energy, magnetoelastic energy,and magnetic field enersy all haveeffects on magnetic property of ferromagnetic material.With the purpose oftesting thermal stress in rails, this paper presented an analysis for the relationsamong these energy. According to the characteristics of the thermal stress,emphasis was given to the analysis of magnetic anisotropy induced by uniaxialstress in rail. The range of magnetic field strength that is suitable to measuringthermal stress was experimentally determined. The results show that withincertaiu range of field strength testins current varies almost quite linearly withthe stress .and it agrees well with the theoretical analysis.展开更多
基金Founded by Hubei Key Loboratory of Roadway Bridge and Struc-ture Engineering( Wuhan University of Technology)
文摘By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved : temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolation process should be taken into consideration in the same time. Proper chemical admixtures and mineral cornpasitions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.
基金partly supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (Grant No. 19121587)supported by the Natural Science Foundation of Shaanxi Province (No.2021KW-25)。
文摘The excellent properties of SiC bring new challenges for the device packaging.In this study,the bonding strength,fracture behaviors and microstructural evolution of micron-porous Ag joint were elevated during thermal cycling(–50 ℃–250 ℃) in SiC/DBC(direct bonding copper) die attachment structure for different time.During harsh thermal shock test,the strength of sintered joint deceased gradually with the increase of cycling number,and the value just was half of the value of as-sintered after 1 000 cycles.Coarsening of Ag grains was observed in micron-porous joint with the structure inhomogeneity and defects increasing,which were the reasons of the strength decease.In addition,it was also found that the fracture behavior of sintered joints was changed from ductile deformation of Ag grain to brittle fracture of crack propagation after 1 000 cycles.This study will add the understanding in the mechanical properties of Ag sinter joining and its applications at high temperature.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2003AA331190).
文摘Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized.
文摘Crystal energy, magnetoelastic energy,and magnetic field enersy all haveeffects on magnetic property of ferromagnetic material.With the purpose oftesting thermal stress in rails, this paper presented an analysis for the relationsamong these energy. According to the characteristics of the thermal stress,emphasis was given to the analysis of magnetic anisotropy induced by uniaxialstress in rail. The range of magnetic field strength that is suitable to measuringthermal stress was experimentally determined. The results show that withincertaiu range of field strength testins current varies almost quite linearly withthe stress .and it agrees well with the theoretical analysis.