期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Effects of variable permeability and radiation absorption on magnetohydrodynamic(MHD)mixed convective flow in a vertical wavy channel with traveling thermal waves 被引量:4
1
作者 P.V.Satya Narayana 《Propulsion and Power Research》 SCIE 2015年第3期150-160,共11页
An analysis has been carried out to study the effects of radiation absorption and firstorder chemical reaction on unsteady mixed convective flow of a viscous incompressible electrically conducting fluid through a poro... An analysis has been carried out to study the effects of radiation absorption and firstorder chemical reaction on unsteady mixed convective flow of a viscous incompressible electrically conducting fluid through a porous medium of variable permeability between two long vertical non conducting wavy channels in the presence of heat generation.The unsteadiness in the flow is due to traveling thermal wave imposed on the walls.The governing equations are solved subject to the relevant boundary conditions with the assumption that the solution consists of a mean part and a perturbed part.The zeroth-order,the first order and the total solution of the problem are numerically evaluated and displayed graphically for pertinent parameters.This model finds applications in studying fixed-bed catalytic reactors and packed bed heat exchangers. 展开更多
关键词 Magnetohydrodynamic(MHD) Chemical reaction Traveling thermal waves Radiation absorption Variable permeability
原文传递
A Thermal Analogue of the Zel’Dovich Effect
2
作者 Gianpaolo Bei 《Journal of Applied Mathematics and Physics》 2023年第12期3970-3983,共14页
We analyze in this work anisotropic heat conduction induced by a harmonically oscillating laser source incident on rotating conductors, exploiting an analogy with an effect discovered long ago, called the Zel’dovich ... We analyze in this work anisotropic heat conduction induced by a harmonically oscillating laser source incident on rotating conductors, exploiting an analogy with an effect discovered long ago, called the Zel’dovich effect. We re-covered the main results of a recently published paper that predicts the translational Doppler frequency shift of a thermal wave induced on a sample moving with uniform rectilinear motion. We extend then this framework to take into account the frequency shift of a thermal field propagating on a rotating platform. We show that it coincides with the rotational frequency shift which has been recently observed on surface acoustic waves and hydrodynamic surface waves, called rotational superradiance. Finally, we use an analogy with the Tolman effect to deduce a simple estimate of the average temperature gradient induced by rotation, showing the existence of a new cooling effect associated with heat torque transfer. 展开更多
关键词 Anisotropic Heat Diffusion Chiral Spinning thermal waves Heat Vortex Beams thermal Doppler Effect thermal Zel’dovich Effect thermal Polarization Vector Rotation Induced Tolman Cooling Effect
下载PDF
Comparative analysis of single-and multiple-frequency thermal wave radar imaging inspection of glass fiber reinforced polymer(GFRP) 被引量:1
3
作者 Lishuai Liu Andreas Mandelis +1 位作者 Alexander Melnikov Liming Wang 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期161-172,共12页
Active infrared thermography has gained increasing popularity for nondestructive testing and evaluation in various industrial fields,especially for composite structures.In this regard,thermal wave radar(TWR)imaging is... Active infrared thermography has gained increasing popularity for nondestructive testing and evaluation in various industrial fields,especially for composite structures.In this regard,thermal wave radar(TWR)imaging is recognized as the next-generation active thermography technology to obtain great resolution and depth range over the inspected objects.A critical aspect concerns the optimal test parameter selection to guarantee reliable quality assurance required for industrial products.In this work,single-and multiple-frequency TWR was investigated in a quantitative manner with the goal of optimizing the detection parameters in terms of probing range and lateral and depth resolution.The effects of test parameters,including sampling frequency,modulation frequency,chirp duration,chirp bandwidth,etc,were investigated in detail through experiments on a glass fiber reinforced polymer specimen with multi-scale diameter-to-depth ratio defects.This paper aims to help yield a better understanding of the physical mechanism behind TWR and propose a workable scheme for testing parameter selection in practical applications. 展开更多
关键词 GFRP thermal wave radar testing parameters nondestructive testing
下载PDF
Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method 被引量:1
4
作者 刘晓宙 朱忆 +1 位作者 张飞 龚秀芬 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期302-307,共6页
In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long therm... In most previous models,simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation,which implies an instantaneous thermal energy deposition in the medium.Due to the long thermal relaxation time τ(20 s-30 s) in biological tissues,the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation.The thermal wave model of bio-heat transfer(TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure.In this paper,COMSOL Multiphysics 3.5a,a finite element method software package,is used to simulate the temperature response in tissues based on Pennes and TWMBT equations.We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate.The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating.Besides,thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time.The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising.On the contrary,heat diffusion,which can be described by thermal conductivity,has little effect on the temperature rising. 展开更多
关键词 thermal wave model of bioheat transfer temperature elevation ultrasound irradiation
下载PDF
The nonlinear response of Cattaneo-type thermal loading of a laser pulse on a medium using the generalized thermoelastic model 被引量:1
5
作者 Farshad Shakeriaski Maryam Ghodrat 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第4期286-297,共12页
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the imp... The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations. 展开更多
关键词 thermal wave propagation Nonlinear generalized thermoelasticity Cattaneo’s heat conduction Laser pulse heating
下载PDF
Thermal Wave Effect and Sintering Activation Energy at the Initial Stage of Field Assisted Sintering Process for Non-conductive Al_2O_3 Powders
6
作者 ZHANG Long 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1416-1421,共6页
The effect of thermal wave at the initial stage for non-conductive Al_2 O_3 powders compact in field assisted sintering technique(FAST) was investigated. The Lord and Shulman type generalized thermoselastic theory was... The effect of thermal wave at the initial stage for non-conductive Al_2 O_3 powders compact in field assisted sintering technique(FAST) was investigated. The Lord and Shulman type generalized thermoselastic theory was introduced to describe the influence of thermal-mechanical interaction, as well as the heat transport and thermal focusing caused by thermal wave propagation. The expression of vacancy concentration difference of the particles was deduced by considering transient thermal stress. Subsequently, the relationship between activation energy and vacancy concentration difference was obtained. The mechanism of surface diffusion, volume diffusion, simultaneous surface and volume diffusion was analyzed. The numerical simulations indicate that low sintering temperature can obtain high local temperature by the superposition effect of thermal wave. Vacancy concentration differences were improved during FAST compared with hot-pressure and pressureless sintering, thereby decreasing the sintering time. By contrast, the activation energy declined with the decrease of vacancy concentration difference in the neck growth process. 展开更多
关键词 field assisted sintering technique generalized thermoelastic theory thermal wave vacancy concentration difference sintering activation energy
下载PDF
Time fractional dual-phase-lag heat conduction equation 被引量:2
7
作者 续焕英 蒋晓芸 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期207-213,共7页
We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic condu... We build a fractional dual-phase-lag model and the corresponding bioheat transfer equation, which we use to interpret the experiment results for processed meat that have been explained by applying the hyperbolic conduction. Analytical solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method. The inverse fractional dual-phase-lag heat conduction problem for the simultaneous estimation of two relaxation times and orders of fractionality is solved by applying the nonlinear least-square method. The estimated model parameters are given. Finally, the measured and the calculated temperatures versus time are compared and discussed. Some numerical examples are also given and discussed. 展开更多
关键词 fractional dual-phase-lag model thermal wave non-Fourier heat conduction analytical solution
下载PDF
Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum 被引量:2
8
作者 Fuyuan Wu Yanyun Chu +13 位作者 Rafael Ramis Zhenghong Li Yanyun Ma Jianlun Yang Zhen Wang Fan Ye Zhanchang Huang Jianmin Qi Lin Zhou Chuan Liang Shijia Chen Zheyi Ge Xiaohu Yang Shangwu Wang 《Matter and Radiation at Extremes》 SCIE EI CAS 2018年第5期248-255,共8页
Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinchdynamic hohlraum, the code MULTI-2D with a new developed magnetic field package i... Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinchdynamic hohlraum, the code MULTI-2D with a new developed magnetic field package is employed to investigate the related physical processeson Julong-I facility with drive current about 7e8 MA. Numerical simulations suggest that Z-pinch dynamic hohlraum with radiation temperaturemore than 100 eV can be created on Julong-I facility. Although some X-rays can escape out of the hohlraum from Z-pinch plasma and electrodes, the radiation field near the foam center is quite uniform after a transition time. For the load parameters used in this paper, the transitiontime for the thermal wave transports from r = 1 mm to r = 0 mm is about 2.0 ns. Implosion of a testing pellet driven by cylindrical dynamichohlraum shows that symmetrical implosion is hard to achieve due to the relatively slow propagation speed of thermal wave and the compressionof cylindrical shock in the foam. With the help of quasi-spherical implosion, the hohlraum radiation uniformity and corresponding pelletimplosion symmetry can be significantly improved thanks to the shape modulation of thermal wave front and shock wave front. 展开更多
关键词 Z-PINCH Dynamic hohlraum Radiation uniformity Shock wave thermal wave
下载PDF
Theoretical Analysis and Experimental Evidence of Non-Fourier Heat Conduction Behavior 被引量:2
9
作者 蒋方明 刘登瀛 蔡睿贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第4期359-366,共8页
This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and... This paper consists of two parts. (1) For a hollow sphere with sudden temperature changes on its inner and outer surfaces, the hyperbolic heat conduction equation is employed to describe this extreme thermal case and an analytical expression of its temperature distribution is obtained. According to the expression, the non-Fourier heat conduction behavior that will appear in the hollow sphere is studied and some qualitative conditions that will result in distinct non-Fourier behavior in the medium is ultimately attained. (2) A novel experiment to observe non-Fourier heat conduction behavior in porous material (mainly ordinary duplicating paper) heated by a microsecond laser pulse is presented. The conditions for observing distinct non-Fourier heat conduction behavior in the experimental sample agree well with the theoretical results qualitatively. 展开更多
关键词 non-Fourier heat conduction hyperbolic heat conduction thermal wave
下载PDF
Flow Instability of Molten GaAs in the Czochralski Configuration
10
作者 Shuxian CHEN Mingwei LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期395-401,共7页
The flow and heat transfer of molten GaAs under the interaction of buoyancy, Marangoni and crystal rotation in the Czochralski configuration are numerically studied by using a time-dependent and three-dimensional turb... The flow and heat transfer of molten GaAs under the interaction of buoyancy, Marangoni and crystal rotation in the Czochralski configuration are numerically studied by using a time-dependent and three-dimensional turbulent flow model for the first time. The transition from axisymmetric flow to non-axisymmetric flow and then returning to axisymmetric flow again with increasing centrifugal and coriolis forces by increasing the crystal rotation rate was numerically observed. The origin of the transition to non-axisymmetric flow has been proved to be baroclinic instability. Several important characteristics of baroclinic instability in the CZ GaAs melt have been predicted. These characteristics are found to be in agreement with experimental observations. 展开更多
关键词 Flow transition Baroclinic instability thermal wave CHARACTERISTICS GaAs melt
下载PDF
Flow transitions in model Czochralski GaAs melt
11
作者 陈淑仙 《Journal of Chongqing University》 CAS 2006年第2期63-70,共8页
The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then ... The flow and heat transfer of molten GaAs during Czochralski growth are studied with a time-dependent and three- dimensional turbulent flow model. A transition from axisymmetric flow to nonoaxisymmetric flow and then back to axisymmetric flow again with increasing the crucible rotation rate is predicted. In the non-axisymmetric regime, the thermal wave induced by the combination of coriolis force, buoyancy and viscous force in the GaAs melt is predicted for the first time. The thermal wave is confirmed to be baroclinic thermal wave. The origin of the transition to non-axisymmetric flow is baroclinic instability. The critical parameters for the, transitions are presented, which are quantitatively in agreement with Fein and Preffer's experimental results, The calculated results can be taken as a reference for the growth of GaAs single-crystal of high quality, 展开更多
关键词 Flow transitions thermal wave baroclinic instability GaAs melt
下载PDF
Multifrequency Gravitational Wave Background from Continuous Sources
12
作者 C. Sivaram Arun Kenath 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第2期698-714,共17页
Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few... Gravitational waves have been detected in the past few years from several transient events such as merging stellar mass black holes, binary neutron stars, etc. These waves have frequencies in a band ranging from a few hundred hertz to around a kilohertz to which LIGO type instruments are sensitive. LISA would be sensitive to much lower range of frequencies from SMBH mergers. Apart from these cataclysmic burst events, there are innumerable sources of radiation which are continuously emitting gravitational waves of all frequencies. These include a whole mass range of compact binary and isolated compact objects as well as close planetary stellar entities. In this work, quantitative estimates are made of the gravitational wave background produced in typical frequency ranges from such sources emitting over a Hubble time and the fluctuations in the <i>h</i> values measured in the usual devices. Also estimates are made of the high frequency thermal background gravitational radiation from hot stellar interiors and newly formed compact objects. 展开更多
关键词 Gravitational waves Neutron Star Mergers Black Hole Mergers Primordial Black Holes Continuous Gravitational waves thermal Gravitational waves Detection of Gravitational waves
下载PDF
Minimum Energy Requirement for Inducing Withdrawal Reflex in Millimeter Wave Exposures
13
作者 Hongyun Wang Wesley A. Burgei +1 位作者 Shannon E. Foley Hong Zhou 《Journal of Applied Mathematics and Physics》 2022年第7期2381-2406,共26页
We consider the problem of inducing withdrawal reflex on a test subject via exposure to a millimeter wave beam. In our physical model, there are 10 physical parameters affecting the occurrence of withdrawal reflex. Ou... We consider the problem of inducing withdrawal reflex on a test subject via exposure to a millimeter wave beam. In our physical model, there are 10 physical parameters affecting the occurrence of withdrawal reflex. Our goal is to pinpoint the roles of these physical parameters in inducing withdrawal reflex. We first carry out non-dimensionalization to reduce the model to a non-dimensional system of only 3 composite parameters: non-dimensional beam power density, non-dimensional beam radius, and non-dimensional exposure time. If the beam power is kept on and steady, withdrawal reflex occurs eventually;the shortest exposure time for inducing withdrawal reflex corresponds to the smallest energy consumption at the given power density and beam radius. In the 2D space of power density and beam radius, the overall minimum energy occurs at the corner of very large power density and very small beam radius, which also produces a very large value of maximum skin temperature and a long time to withdrawal reflex. To reduce the burn injury risk, we introduce a cap on the maximum skin temperature. At each given total beam power, we carry out optimizations with respect to the beam radius, constrained by the prescribed temperature cap. The energy consumption varies negatively with the prescribed temperature cap: a lower temperature cap can be accommodated only with a higher energy consumption via the venue of a larger beam radius. The energy consumption is relatively flat with respect to the total beam power and attains a minimum at a moderately large total beam power. The time to withdrawal reflex is approximately inversely proportional to the total beam power. Our analysis demonstrates that a moderately large total beam power is a good compromise to achieve both low energy consumption and short time to withdrawal reflex. 展开更多
关键词 thermal Effect of Millimeter Wave in Skin Activation of thermal Nociceptors Non-Dimensionalization Analysis Optimization
下载PDF
EFFECT OF TEMPERATURE-DEPENDENT PROPERTIES ON THERMOELASTIC PROBLEMS WITH THERMAL RELAXATIONS 被引量:5
14
作者 Tianhu He Shuanhu Shi 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第4期412-419,共8页
Based on the generalized thermoelasticity proposed by Green and Lindsay, the dynamic response of generalized thermoelastic problems with temperature-dependent material properties is investigated. The governing equatio... Based on the generalized thermoelasticity proposed by Green and Lindsay, the dynamic response of generalized thermoelastic problems with temperature-dependent material properties is investigated. The governing equations are formulated and found to be nonlinear because of the temperature-dependence of properties. Owing to the nonlinearity of the governing equations, the finite element method is resorted to for solution. The results obtained show that the temperature-dependent properties influence the variables considered by reducing their magnitudes. This indicates that taking the temperature-dependence of properties into consideration in the investigation of generalized thermoelastic problems is necessary and practical for accurately predicting the thermoelastic behavior. 展开更多
关键词 Green and Lindsay theory thermal shock finite element method thermal wave temperature-dependent properties
原文传递
Interpretation of living tissue's temperature oscillations by thermal wave theory 被引量:5
15
作者 刘静 任泽霈 王存诚 《Chinese Science Bulletin》 SCIE EI CAS 1995年第17期1493-1495,共3页
The fact that the temperature of living tissue may respond oscillatorily to externalheating has been a classical difficulty in the field of bioheat transfer for a long time.Roemer et al. have carefully discussed this ... The fact that the temperature of living tissue may respond oscillatorily to externalheating has been a classical difficulty in the field of bioheat transfer for a long time.Roemer et al. have carefully discussed this in their serial articles, but experiments did notsupport their conclusions, Tharp et al. have artificially made a time-delay differential equs-tion to describe this phenomenon, but their model is short of a strict theoretical founda- 展开更多
关键词 heat Interpretation of living tissue’s temperature oscillations by thermal wave theory wave
原文传递
Study on thermal wave based on the thermal mass theory 被引量:3
16
作者 HU RuiFeng CAO BingYang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第6期1786-1792,共7页
The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The... The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable. 展开更多
关键词 thermal wave thermal mass theory non-Fourier heat conduction CV mode
原文传递
Experimental and Numerical Study on Infrared Thermal Wave Imaging
17
作者 何东明 朱德忠 顾毓沁 《Tsinghua Science and Technology》 SCIE EI CAS 1997年第2期103-107,共5页
The fast development of thermal wave imaging has led to the emergence of a novel technique of nondestructive evaluation (NDE) for thermophysical properties and subsurface defects of solids recently. This paper present... The fast development of thermal wave imaging has led to the emergence of a novel technique of nondestructive evaluation (NDE) for thermophysical properties and subsurface defects of solids recently. This paper presents the experimental reserch on infrared thermal waving which can be used to measure thermal diffusivity and local heat transfer coefficient of thin materials. Numerical modeling of subsurface defect detecting is also performed for pulse echo thermal wave imaging. 展开更多
关键词 thermal wave imaging nondestructive evaluation thermal diffusivity numerical modeling
原文传递
Qualitative Experimental Evidences for the Thermal Wave Mechanisms of Temperature Oscillations in Living Tissues
18
作者 JingLiu XingguoSun 《Journal of Thermal Science》 SCIE EI CAS CSCD 1996年第4期266-270,共5页
To make it possible for the thermal wave theory on temperature oscillation (TO) effects in living tissues to be founded on the substantial experimental basis, a series of typical decisive experiments in vivo as well a... To make it possible for the thermal wave theory on temperature oscillation (TO) effects in living tissues to be founded on the substantial experimental basis, a series of typical decisive experiments in vivo as well as in artificially simulating constructions were carried out. Conclusions obtained including some other scholars' animal experimental results all greatly support the thermal wave viewpoint qualitatively.A few experimental facts used hot to be easily understood from the classical viewpoint are also well reinterpreted. The revealing on the thermal wave mechanisms of TO in living tissues is a brand new discovery and deep insight into this important thermophysiological phenomenon. It may possibly promote new investigations on the corresponding topics in the field of bioheat transfer science. 展开更多
关键词 bioheat transfer thermal physiology life phenomena temperature oscillation thermal wave in vivo experiments simulating experiments.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部