A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The cataly...A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.展开更多
Reaction of Ba(NO3)2 with Fe(NO3)3·9H2O and H2C2O4·2H2O in aqueous medium readily affords, in high yield, the bimetallic complex polymer of chemical composition {Ba6(H2O)17[Fe(C2O4)3]4}·7H2O (1), consis...Reaction of Ba(NO3)2 with Fe(NO3)3·9H2O and H2C2O4·2H2O in aqueous medium readily affords, in high yield, the bimetallic complex polymer of chemical composition {Ba6(H2O)17[Fe(C2O4)3]4}·7H2O (1), consistent with the expected ratio of 3BaII vs. 2FeIII. Compound 1 was fully characterized by elemental and thermal analyses, vibrational FTIR spectroscopy, and by single crystal X-ray structure determination. The bulk structure of 1 is a 3-D metal-organic framework held together by intermetallic linkages across oxalate and aqua oxygen bridgings. Thermal analyses of 1 show significant weight losses corresponding to water molecules (lattice and coordinated), followed by the decomposition of the network.展开更多
A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption m...A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.展开更多
In this study, the effects of copper(Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag–Cu/SBA-15 catalysts was hi...In this study, the effects of copper(Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag–Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5 Ag1-Cu0.1/SBA-15 catalyst, on which the soot combustion starts at Tig= 225°C with a T50= 285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C(Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag–Cu nanolloy particles, downsizing the mean particle size from 3.7 nm in monometallic catalyst to 2.6 nm in bimetallic Ag–Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance.展开更多
基金Supported by the National Natural Science Foundation of China(21476244,21406245)Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21030600)the Youth Innovation Promotion Association CAS(2016046)
文摘A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.
文摘Reaction of Ba(NO3)2 with Fe(NO3)3·9H2O and H2C2O4·2H2O in aqueous medium readily affords, in high yield, the bimetallic complex polymer of chemical composition {Ba6(H2O)17[Fe(C2O4)3]4}·7H2O (1), consistent with the expected ratio of 3BaII vs. 2FeIII. Compound 1 was fully characterized by elemental and thermal analyses, vibrational FTIR spectroscopy, and by single crystal X-ray structure determination. The bulk structure of 1 is a 3-D metal-organic framework held together by intermetallic linkages across oxalate and aqua oxygen bridgings. Thermal analyses of 1 show significant weight losses corresponding to water molecules (lattice and coordinated), followed by the decomposition of the network.
基金supported by National Natural Science Foundation of China(Nos.21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.
基金the National Natural Science Foundation of China(Nos.21403178,21473145,21503173,and 91545115)the National High-tech R&D Program(2015AA03A402)the Program for Innovative Research Team in Chinese Universities(No.IRT_14R31)
文摘In this study, the effects of copper(Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag–Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5 Ag1-Cu0.1/SBA-15 catalyst, on which the soot combustion starts at Tig= 225°C with a T50= 285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C(Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag–Cu nanolloy particles, downsizing the mean particle size from 3.7 nm in monometallic catalyst to 2.6 nm in bimetallic Ag–Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance.