At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal c...At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.展开更多
The landscape environment of urban blocks plays a significant role in improving the comfort of urban thermal environment and promoting green and high-quality development.The 342 papers related to the research on the i...The landscape environment of urban blocks plays a significant role in improving the comfort of urban thermal environment and promoting green and high-quality development.The 342 papers related to the research on the impact of urban block landscape environment on thermal comfort in China,collected by CNKI(China National Knowledge Infrastructure)from 2002 to 2022,are used as the research object.Through bibliometric statistical analysis,LLR algorithm,and cluster analysis,the current research status of the impact of urban block landscape environment on thermal comfort in China is analyzed and processed,and its external characteristics are identified.Using the information visualization software CiteSpace,the research topics in the field of the impact of urban block landscape environment on thermal comfort are presented in the form of knowledge graphs.Through co-occurrence analysis of keywords and trend of word frequency changes,the development trends of research hotspots and cutting-edge fields of the impact of urban block landscape environment on thermal comfort are determined,hoping to provide reference for future research in this field.展开更多
This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source o...This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.展开更多
Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid...Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.展开更多
Thermal comfort evaluations for Yuexiu Park,Lushan Park,and Baiyun Lake Park in Guangzhou were conducted using field meteorological data collection,visitor questionnaires,and literature reviews.It analyzed the impact ...Thermal comfort evaluations for Yuexiu Park,Lushan Park,and Baiyun Lake Park in Guangzhou were conducted using field meteorological data collection,visitor questionnaires,and literature reviews.It analyzed the impact of green coverage,water body layout,and facility configuration on thermal comfort.The results showed that good green and water body design effectively lowered the temperature in the park and improved the thermal comfort of visitors,but the insufficient facility configuration in some open areas affected the experience.The visitor’s experience is closely related to the natural environment and facility layout of the park.Therefore,in the future,park design should pay more attention to the rational configuration of shading,ventilation,and cooling facilities to improve thermal comfort,and encourage citizens to participate in the construction and management of parks to improve ecological quality and user experience.This study provides a reference for the improvement of thermal comfort in urban parks in Guangzhou and aims to promote the sustainable and human-oriented development of urban park design.展开更多
With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies o...With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies of urban street thermal comfort.The urban heat island effect,environmental parameters,building layout,and green planting all have a significant impact on the thermal comfort of streets.Improvement strategies include optimizing cultivating pattern of plants,adjusting street layout,and improving paving materials of road.The multi-layer vegetation structure provides green shade,reduces local temperature,and humidifies the surrounding environment.It should adjust the street orientation and aspect ratio to provide sunlight and ventilation,and reduce ambient temperature.Paving materials with low reflectivity and light color and permeable underlying surface should be chosen to reduce heat absorption,increase shading and greenery,and improve thermal comfort.展开更多
The local skin temperatures of 22 subjects at air temperatures of 21,24,26,29 ℃ are measured,and the mean skin temperatures are calculated by ten skin temperature measuring points.The thermal comfort levels and the t...The local skin temperatures of 22 subjects at air temperatures of 21,24,26,29 ℃ are measured,and the mean skin temperatures are calculated by ten skin temperature measuring points.The thermal comfort levels and the thermal sensations of these subjects are also investigated by a questionnaire.The Mahalanobis distance discrimination method is applied to establish the evaluation model for the thermal comfort based on the mean skin temperature.The experimental results indicate that the difference of the mean skin temperatures between the comfort level and the discomfort level is significant.Using the evaluation model,the mean skin temperature at the thermal comfort level is 32.6 to 33.7 ℃,and the thermal comfort levels of 72% of the subjects are correctly evaluated.The accuracy of the evaluation model can be improved when the effects of sex of the subject on the mean skin temperature and the thermal comfort are considered.It can be concluded that the mean skin temperature can be used as an effective physiological indicator to evaluate human thermal comfort in a steady thermal environment.展开更多
This paper introduces a field measurement of an indoor thermal environment in rural housing in suburban Beijing from December 2008 to March 2009.The indoor environment parameters such as air temperature,mean radiant t...This paper introduces a field measurement of an indoor thermal environment in rural housing in suburban Beijing from December 2008 to March 2009.The indoor environment parameters such as air temperature,mean radiant temperature(MRT),airflow velocity and relative humidity are measured.A questionnaire survey of the occupants' thermal sensations in these surveyed houses is conducted and their daily activities and clothing conditions are recorded.The results show that the thermal neutral temperature of rural housing is 18.4 ℃,and the lower limit of acceptable temperature range can be extended to 10.9 ℃.The comfortable indoor temperature is affected by the occupants' clothing and lifestyle.Therefore,the indoor temperature standards of space heating for suburban housing cannot be simply duplicated from that for urban housing.Compared with occupants in suburban Beijing,it is found that the occupants in rural Hunan province feel colder at the same operative temperature due to the high relative humidity in Hunan province.展开更多
Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conduct...Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential...The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.展开更多
Urban human thermal comfort(UHTC) is affected for interacting of weather condition and underlying surface framework of urban area. Urban underlying surface temperature value and Normalized Difference Vegetation Index(...Urban human thermal comfort(UHTC) is affected for interacting of weather condition and underlying surface framework of urban area. Urban underlying surface temperature value and Normalized Difference Vegetation Index(NDVI) were calculated using image interpreting and supervised classification technique by ERDAS IMAGE software using 1991 and 1999 Landsat TM images data. Reference to the relational standard of assessing human thermal comfort and other meteorology data of Hangzhou City in summer, air temperature and relative humidity variation of different land types of underlying surface were inversed. By choosing discomfort index as an indictor, the spatial distribution characteristic and the spatial variation degree of UHTC were estimated and mapped on a middle scale, that is, in six districts of Hangzhou. The main characteristics of UHTC spatial variation from 1991 to 1999 were revealed using a GIS-based calculation model. The variation mechanism were analyzed and discussed from the viewpoint of city planning, construction and environmental protection.展开更多
Outdoor thermal comfort has always been a major issue due to its irreplaceable role in maintaining good health and energy use. Thus,quantitative analysis of outdoor thermal comfort and discussions on influential facto...Outdoor thermal comfort has always been a major issue due to its irreplaceable role in maintaining good health and energy use. Thus,quantitative analysis of outdoor thermal comfort and discussions on influential factors seem very necessary to achieve the climate-conscious urban design. Therefore,an outdoor thermal comfort questionnaire survey and the simultaneous field measurement were conducted in six different places during the hot and humid summertime in Shenzhen. The results show that the overall weather conditions during the investigation can be expressed with high temperature and high humidity with strong solar radiation. The micro-meteorological parameters of six test sites vary greatly due to their different regional spatial layouts.Moderate range of air temperature( Ta) is between 28 to 30 ℃ while that of relative humidity( RH) mainly concentrates in 60%-70% with the thermal sensation votes. The main influential factors impacting outdoor thermal comfort are obtained and Tahas the greatest effect. The overall thermal comfortable ranges in Shenzhen are expressed by the range of 28. 14-32. 83 ℃ of PET and 24. 74-30. 45 ℃ of SET*. With the correlation analysis between the characteristic parameters of regional spatial layout and thermal climate and thermal comfort,it reveals that increasing the coverage ratio of water and green space( S) helps lower Taand increase RH. The global solar radiation( G) has a significant negative correlation with the height of buildings( H) and a positive correlation with sky view factor( SVF). Overall,reasonable configuration of the regional spatial layout contributes to providing a thermal comfortable environment.展开更多
Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters a...Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters are still less clear.On three similar east-west orientated streets with different degrees of tree cover-low(13%),medium(35%),and high(75%),urban microclimatic parameters and human physiological indices for six male students were simultaneously measured on three cloudless days in summer 2018.The results show that the differences in tree cover were predominant in influencing urban thermal environment and comfort.The street with the highest tree cover had significantly lower physiological equivalent temperature(PET) and more comfortable than the other two streets.The frequency of strong heat stress(PET> 35℃) was 64%,11 %,and 0%,respectively,for streets with low,medium,and high tree cover.For the six male university students,human physiological indices varied greatly across the three streets with different tree cover.Systolic blood pressure,diastolic blood pressure,and pulse rate increased with decreasing tree cover.The results also suggest that urban thermal environment and comfort had considerable impact on human physiological parameters.Our study provides reasons for urban planners to plant trees along streets to improve the thermal environment and promote urban sustainability.展开更多
Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to Ja...Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to January 2006, nerve conduction velocities and skin temperatures of 20 healthy students were tested with questionnaire investigation. The results show that the nerve conduction velocities as well as skin temperatures present an obvious decline trend in a continuous draught, and that the nerve conduction velocities and skin temperatures have a definite linear relationship. Draught velocity is an important factor in winter that affects body comfort, and the subjects are sensitive to air velocity.展开更多
Kunming,a city in southwest China,has a climate that is different from most of the other places in the world because of its unique geographical characteristics.Due to its temperate climate,most of the residential buil...Kunming,a city in southwest China,has a climate that is different from most of the other places in the world because of its unique geographical characteristics.Due to its temperate climate,most of the residential buildings in this region are naturally ventilated.Accordingly,a winter thermal comfort study was conducted in Kunming to reveal the thermal response of residents.Indoor and outdoor environmental parameters were measured,and participants were investigated about their clothing,thermal sensations,thermal preferences,and thermal acceptance using online questionnaires.Data from 162 valid questionnaires were collected in the survey.Although the climate is referred to as“mild”,the survey showed that the indoor temperature during winter was lower than the typical comfort range.Nevertheless,the participants responded that most of them felt neutral and comfortable.The neutral temperature of participants living in Kunming was determined to be 16.96℃.The acceptable thermal sensation vote(TSV)range of the residents is-0.72 to 1.52.The acceptable indoor air temperature range is 15.03℃ to 19.55℃,and the optimum indoor air temperature is 17.2℃.According to this study,the existing thermal comfort evaluation models can hardly predict residents’thermal responses in Kunming well.展开更多
This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over ...This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.展开更多
Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influ...Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet,China,oxygen generators were used to create oxygen-enriched environments,and physiological and psychological reactions of subjects were compared under different oxygen partial pressures(p_(O_(2)))and air temperatures(t_(a)).The results showed that subjects’thermal sensation,thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure.When t_(a)=17℃,the influence of oxygen partial pressure was more pronounced,compared to p_(O_(2))=16.4 kPa,the thermal sensation of subjects under p_(O_(2))=13.7 kPa decreased by 33%.The rate of subjects feeling comfortable decreased by 25%,and the mean skin temperature decreased by 0.7℃.The hypoxic environment of the plateau exacerbates human discomfort.Therefore,it is necessary to fully understand the actual thermal requirements of sojourners in Tibet,China.The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau.展开更多
We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth ...We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth index) and HDR(heat deficit rate) were built on the distinguishing features of public area in subway station. Taking one representative subway station in Nanjing as the research object, the thermal comfort conditions in different seasons and different parts were studied by field tests, questionnaires and model-evaluating. The calculated RWI shows that although the thermal comfort in Nanjing metro is relatively acceptable, ideal thermal comfort has not been achieved. And it is found that associated with predicted mean vote(PMV), using RWI can evaluate the thermal comfort more precisely.展开更多
As a transition space,atrium not only organizes traffic,makes the flow line flexible,but also modulates the indoor micro-climate. Because of its good sense of space and lighting performance,designers generally set rea...As a transition space,atrium not only organizes traffic,makes the flow line flexible,but also modulates the indoor micro-climate. Because of its good sense of space and lighting performance,designers generally set reading space around the atrium. But nowadays,people are more concerned with the external form of the architecture,rather than the thermal comfort conditions of the atrium reading space. This article chooses the universities' library atrium space of Harbin in typical city in cold regions as the carrier of research,testes the thermal environment of atrium reading space, analyzes the user 's subjective feelings of the thermal environment and establishes climate adaptation model applied to library buildings. This paper aims to study on Winter thermal comfort of universities' library atrium reading space in cold area. Bases on thermal comfort adaptive model,it establishes a reasonable heating methods and design temperature index of indoor thermal environment. Optimum comfort is obtained while achieving building energy efficiency and providing viewers a comfortable reading space.展开更多
基金supported by the China Scholarship Council(Grant Number 202208120025).
文摘At present,air handling units are usually used indoors to improve the indoor environment quality.However,while introducing fresh air to improve air quality,air velocity has a certain impact on the occupants’thermal comfort.Therefore,it is necessary to explore the optimization of air-fluid-body interaction dynamics.In this study,the indoor air flow was changed by changing the opening and closing degree of the blower,and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities.The main experimental results show that the air change rate increases with the increase of the opening and closing degree of the blower considering an ACH(air changes per hour)range between 3.8 and 10.For a better prediction,a linear correlation with a coefficient of 0.995 is proposed.As the blower’s opening is adjusted to 20%,25%,30%,35%,and 40%,the air velocity sensor positioned directly beneath the air inlet records average velocities of 0.19,0.20,0.21,0.28,and 0.34 m/s over four hours,respectively.Observations on thermal comfort and the average sensation experienced by individuals indicate an initial increase followed by a decline when the blower’s operation begins,with optimal conditions achieved at a 35%opening.These findings offer valuable insights for future indoor air ventilation and heat transfer design strategies.
基金the National Natural Science Foundation of China(51708004)Beijing Youth Teaching Master Team Construction Project(108051360023XN261)Yuyou Talent Training Program of North China University of Technology(215051360020XN160/009).
文摘The landscape environment of urban blocks plays a significant role in improving the comfort of urban thermal environment and promoting green and high-quality development.The 342 papers related to the research on the impact of urban block landscape environment on thermal comfort in China,collected by CNKI(China National Knowledge Infrastructure)from 2002 to 2022,are used as the research object.Through bibliometric statistical analysis,LLR algorithm,and cluster analysis,the current research status of the impact of urban block landscape environment on thermal comfort in China is analyzed and processed,and its external characteristics are identified.Using the information visualization software CiteSpace,the research topics in the field of the impact of urban block landscape environment on thermal comfort are presented in the form of knowledge graphs.Through co-occurrence analysis of keywords and trend of word frequency changes,the development trends of research hotspots and cutting-edge fields of the impact of urban block landscape environment on thermal comfort are determined,hoping to provide reference for future research in this field.
文摘This work falls within the context of reducing energy consumption in Côte d’Ivoire. As the building sector is one of the energy consumers worldwide, it could be a major source of energy savings. A major source of energy savings. With this in mind thermal comfort in buildings in Côte d’Ivoire (Abidjan) in order to determine (Abidjan) to determine thermal comfort conditions. To carry out study, measurement campaigns were carried out in various buildings. These measured parameters were used to calculate comfort indices such as PMV, PDD, SET and operating temperature. A correlation was then made between the PMV index and the operating temperature, then between the SET and the operating temperature to determine the thermoneutrality temperature and the different thermal comfort thermal comfort ranges. The PMV gave a thermoneutrality temperature of 24.87˚C in the rainy season and a thermoneutrality temperature of 25.15˚C during the dry season. In addition, the SET gave comfort ranges, with values ranging from 23.23˚C to 25.70˚C in the rainy season and 23.35˚C to 26.08˚C in the dry season. In addition, the acceptability predicted by the PDD showed that in the rainy season, the premises were more acceptable than in the dry season.
文摘Compressed earth blocks (CEB) are an alternative to cement blocks in the construction of wall masonry. However, the optimal architectural construction methods for adequate thermal comfort for occupants in hot and arid environments are not mastered. This article evaluates the influence of architectural and constructive modes of buildings made of CEB walls and concrete block walls, to optimize and compare their thermal comfort in the hot and dry tropical climate of Ouagadougou, Burkina Faso. Two identical pilot buildings whose envelopes are made of CEB and concrete blocks were monitored for this study. The thermal models of the pilot buildings were implemented in the SketchUp software using an extension of EnergyPlus. The models were empirically validated after calibration against measured thermal data from the buildings. The models were used to do a parametric analysis for optimization of the thermal performances by simulating plaster coatings on the exterior of walls, airtight openings and natural ventilation depending on external weather conditions. The results show that the CEB building displays 7016 hours of discomfort, equivalent to 80.1% of the time, and the concrete building displays 6948 hours of discomfort, equivalent to 79.3% of the time. The optimization by modifications reduced the discomfort to 2918 and 3125 hours respectively;i.e. equivalent to only 33.3% for the CEB building and 35.7% for the concrete building. More study should evaluate thermal optimizations in buildings in real time of usage such as residential buildings commonly used by the local middle class. The use of CEB as a construction material and passive means of improving thermal comfort is a suitable ecological and economical option to replace cementitious material.
文摘Thermal comfort evaluations for Yuexiu Park,Lushan Park,and Baiyun Lake Park in Guangzhou were conducted using field meteorological data collection,visitor questionnaires,and literature reviews.It analyzed the impact of green coverage,water body layout,and facility configuration on thermal comfort.The results showed that good green and water body design effectively lowered the temperature in the park and improved the thermal comfort of visitors,but the insufficient facility configuration in some open areas affected the experience.The visitor’s experience is closely related to the natural environment and facility layout of the park.Therefore,in the future,park design should pay more attention to the rational configuration of shading,ventilation,and cooling facilities to improve thermal comfort,and encourage citizens to participate in the construction and management of parks to improve ecological quality and user experience.This study provides a reference for the improvement of thermal comfort in urban parks in Guangzhou and aims to promote the sustainable and human-oriented development of urban park design.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043).
文摘With the continuous intensification of the global greenhouse effect,thermal comfort has become a highly concerned issue in the living environment.The study explores the influencing factors and improvement strategies of urban street thermal comfort.The urban heat island effect,environmental parameters,building layout,and green planting all have a significant impact on the thermal comfort of streets.Improvement strategies include optimizing cultivating pattern of plants,adjusting street layout,and improving paving materials of road.The multi-layer vegetation structure provides green shade,reduces local temperature,and humidifies the surrounding environment.It should adjust the street orientation and aspect ratio to provide sunlight and ventilation,and reduce ambient temperature.Paving materials with low reflectivity and light color and permeable underlying surface should be chosen to reduce heat absorption,increase shading and greenery,and improve thermal comfort.
基金The National Natural Science Foundation of China(No.5087125)
文摘The local skin temperatures of 22 subjects at air temperatures of 21,24,26,29 ℃ are measured,and the mean skin temperatures are calculated by ten skin temperature measuring points.The thermal comfort levels and the thermal sensations of these subjects are also investigated by a questionnaire.The Mahalanobis distance discrimination method is applied to establish the evaluation model for the thermal comfort based on the mean skin temperature.The experimental results indicate that the difference of the mean skin temperatures between the comfort level and the discomfort level is significant.Using the evaluation model,the mean skin temperature at the thermal comfort level is 32.6 to 33.7 ℃,and the thermal comfort levels of 72% of the subjects are correctly evaluated.The accuracy of the evaluation model can be improved when the effects of sex of the subject on the mean skin temperature and the thermal comfort are considered.It can be concluded that the mean skin temperature can be used as an effective physiological indicator to evaluate human thermal comfort in a steady thermal environment.
基金The National Natural Science Foundation of China(No.50838003)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAJ02A06)
文摘This paper introduces a field measurement of an indoor thermal environment in rural housing in suburban Beijing from December 2008 to March 2009.The indoor environment parameters such as air temperature,mean radiant temperature(MRT),airflow velocity and relative humidity are measured.A questionnaire survey of the occupants' thermal sensations in these surveyed houses is conducted and their daily activities and clothing conditions are recorded.The results show that the thermal neutral temperature of rural housing is 18.4 ℃,and the lower limit of acceptable temperature range can be extended to 10.9 ℃.The comfortable indoor temperature is affected by the occupants' clothing and lifestyle.Therefore,the indoor temperature standards of space heating for suburban housing cannot be simply duplicated from that for urban housing.Compared with occupants in suburban Beijing,it is found that the occupants in rural Hunan province feel colder at the same operative temperature due to the high relative humidity in Hunan province.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B05)
文摘Field measurements on thermal comfort were carried out in a building with double-skin faade from January 14th to 16th,2009.Data are obtained by measurements of physical parameters and a questionnaire survey is conducted at the same time in 27 offices of the building.The subjective survey involves questions on demographic information of the occupants,health status,environmental comfort conditions and acceptance.A total of 150 occupants are investigated and 131 questionnaires are completed.The statistical data presents the distributions of predicted mean vote,mean thermal sensation vote,mean thermal comfort vote,thermal acceptability,etc.The results show that low relative humidity is the main reason causing thermal discomfort.The greatest discomfort is dry mouth and eye dryness which are caused by low relative humidity.The females are verified to be more sensitive than the males.Meanwhile,a double-skin faade represents a good noise insulation effect while the glare problem is still unresolved.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
基金Project(51325803)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2020M673489)supported by China Postdoctoral Science FoundationProject(2020-K-196)supported by the Science and Technology Project of Ministry of Housing and Urban-Rural Development,China。
文摘The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.
文摘Urban human thermal comfort(UHTC) is affected for interacting of weather condition and underlying surface framework of urban area. Urban underlying surface temperature value and Normalized Difference Vegetation Index(NDVI) were calculated using image interpreting and supervised classification technique by ERDAS IMAGE software using 1991 and 1999 Landsat TM images data. Reference to the relational standard of assessing human thermal comfort and other meteorology data of Hangzhou City in summer, air temperature and relative humidity variation of different land types of underlying surface were inversed. By choosing discomfort index as an indictor, the spatial distribution characteristic and the spatial variation degree of UHTC were estimated and mapped on a middle scale, that is, in six districts of Hangzhou. The main characteristics of UHTC spatial variation from 1991 to 1999 were revealed using a GIS-based calculation model. The variation mechanism were analyzed and discussed from the viewpoint of city planning, construction and environmental protection.
基金Sponsored by Open Project of the State Key Laboratory of Urban Resource and Environment(Grant No.2010TS04)
文摘Outdoor thermal comfort has always been a major issue due to its irreplaceable role in maintaining good health and energy use. Thus,quantitative analysis of outdoor thermal comfort and discussions on influential factors seem very necessary to achieve the climate-conscious urban design. Therefore,an outdoor thermal comfort questionnaire survey and the simultaneous field measurement were conducted in six different places during the hot and humid summertime in Shenzhen. The results show that the overall weather conditions during the investigation can be expressed with high temperature and high humidity with strong solar radiation. The micro-meteorological parameters of six test sites vary greatly due to their different regional spatial layouts.Moderate range of air temperature( Ta) is between 28 to 30 ℃ while that of relative humidity( RH) mainly concentrates in 60%-70% with the thermal sensation votes. The main influential factors impacting outdoor thermal comfort are obtained and Tahas the greatest effect. The overall thermal comfortable ranges in Shenzhen are expressed by the range of 28. 14-32. 83 ℃ of PET and 24. 74-30. 45 ℃ of SET*. With the correlation analysis between the characteristic parameters of regional spatial layout and thermal climate and thermal comfort,it reveals that increasing the coverage ratio of water and green space( S) helps lower Taand increase RH. The global solar radiation( G) has a significant negative correlation with the height of buildings( H) and a positive correlation with sky view factor( SVF). Overall,reasonable configuration of the regional spatial layout contributes to providing a thermal comfortable environment.
基金The work was supported by the Youth Science Fund Project approved by the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant 2020237in part by the National Natural Science Foundation of China under Grant 4170121.
文摘Planting trees along urban streets is one of the most important strategies to improve the urban thermal environment.However,the net impacts of urban street trees on human thermal comfort and physiological parameters are still less clear.On three similar east-west orientated streets with different degrees of tree cover-low(13%),medium(35%),and high(75%),urban microclimatic parameters and human physiological indices for six male students were simultaneously measured on three cloudless days in summer 2018.The results show that the differences in tree cover were predominant in influencing urban thermal environment and comfort.The street with the highest tree cover had significantly lower physiological equivalent temperature(PET) and more comfortable than the other two streets.The frequency of strong heat stress(PET> 35℃) was 64%,11 %,and 0%,respectively,for streets with low,medium,and high tree cover.For the six male university students,human physiological indices varied greatly across the three streets with different tree cover.Systolic blood pressure,diastolic blood pressure,and pulse rate increased with decreasing tree cover.The results also suggest that urban thermal environment and comfort had considerable impact on human physiological parameters.Our study provides reasons for urban planners to plant trees along streets to improve the thermal environment and promote urban sustainability.
基金Project(CSTC 2004AA7008) supported by the State I mportant Project of the Science and Technology
文摘Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to January 2006, nerve conduction velocities and skin temperatures of 20 healthy students were tested with questionnaire investigation. The results show that the nerve conduction velocities as well as skin temperatures present an obvious decline trend in a continuous draught, and that the nerve conduction velocities and skin temperatures have a definite linear relationship. Draught velocity is an important factor in winter that affects body comfort, and the subjects are sensitive to air velocity.
基金Project(2018YFC0704500)supported by the National Key R&D Program of ChinaProjects(51838007,52130803)supported by the National Natural Science Foundation of China。
文摘Kunming,a city in southwest China,has a climate that is different from most of the other places in the world because of its unique geographical characteristics.Due to its temperate climate,most of the residential buildings in this region are naturally ventilated.Accordingly,a winter thermal comfort study was conducted in Kunming to reveal the thermal response of residents.Indoor and outdoor environmental parameters were measured,and participants were investigated about their clothing,thermal sensations,thermal preferences,and thermal acceptance using online questionnaires.Data from 162 valid questionnaires were collected in the survey.Although the climate is referred to as“mild”,the survey showed that the indoor temperature during winter was lower than the typical comfort range.Nevertheless,the participants responded that most of them felt neutral and comfortable.The neutral temperature of participants living in Kunming was determined to be 16.96℃.The acceptable thermal sensation vote(TSV)range of the residents is-0.72 to 1.52.The acceptable indoor air temperature range is 15.03℃ to 19.55℃,and the optimum indoor air temperature is 17.2℃.According to this study,the existing thermal comfort evaluation models can hardly predict residents’thermal responses in Kunming well.
基金the National Natural Science Foundation of China(No.11902153)the Natural Science Foundation of Jiangsu Province(No.BK20190378)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘This study conducts an evaluation of air quality,dispersion of airborne expiratory pollutants and thermal comfort in aircraft cabin mini-environments using a critical examination of significant studies conducted over the last20 years.The research methods employed in these studies are also explained in detail.Based on the current literature,standard procedures for airplane personal ventilation and air quality investigations are defined for each study approach.Present study gaps are examined,and prospective study subjects for various research approaches are suggested.
基金Project(U20A20311)supported by the State Key Program of National Natural Science Foundation of ChinaProject(52008329)supported by the National Natural Science Foundation of ChinaProject(2018BSHYDZZ14)supported by the Postdoctoral Research Foundation of Shaanxi Province,China。
文摘Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet,China,oxygen generators were used to create oxygen-enriched environments,and physiological and psychological reactions of subjects were compared under different oxygen partial pressures(p_(O_(2)))and air temperatures(t_(a)).The results showed that subjects’thermal sensation,thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure.When t_(a)=17℃,the influence of oxygen partial pressure was more pronounced,compared to p_(O_(2))=16.4 kPa,the thermal sensation of subjects under p_(O_(2))=13.7 kPa decreased by 33%.The rate of subjects feeling comfortable decreased by 25%,and the mean skin temperature decreased by 0.7℃.The hypoxic environment of the plateau exacerbates human discomfort.Therefore,it is necessary to fully understand the actual thermal requirements of sojourners in Tibet,China.The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau.
文摘We analyzed the characteristics of subway station environment and the change of thermal comfort for passengers when they are in and out of the station. The dynamic thermal comfort evaluation model RWI(relative warmth index) and HDR(heat deficit rate) were built on the distinguishing features of public area in subway station. Taking one representative subway station in Nanjing as the research object, the thermal comfort conditions in different seasons and different parts were studied by field tests, questionnaires and model-evaluating. The calculated RWI shows that although the thermal comfort in Nanjing metro is relatively acceptable, ideal thermal comfort has not been achieved. And it is found that associated with predicted mean vote(PMV), using RWI can evaluate the thermal comfort more precisely.
基金Sponsored by the National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China(Grant No.2012BAJ06B04-02)
文摘As a transition space,atrium not only organizes traffic,makes the flow line flexible,but also modulates the indoor micro-climate. Because of its good sense of space and lighting performance,designers generally set reading space around the atrium. But nowadays,people are more concerned with the external form of the architecture,rather than the thermal comfort conditions of the atrium reading space. This article chooses the universities' library atrium space of Harbin in typical city in cold regions as the carrier of research,testes the thermal environment of atrium reading space, analyzes the user 's subjective feelings of the thermal environment and establishes climate adaptation model applied to library buildings. This paper aims to study on Winter thermal comfort of universities' library atrium reading space in cold area. Bases on thermal comfort adaptive model,it establishes a reasonable heating methods and design temperature index of indoor thermal environment. Optimum comfort is obtained while achieving building energy efficiency and providing viewers a comfortable reading space.