Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first p...Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.展开更多
There has been growing interest in the high-entropy ceramic(HEC)recently owing to its tailorable compositions and microstructures,versatile properties,together with promising structural and functional applications.How...There has been growing interest in the high-entropy ceramic(HEC)recently owing to its tailorable compositions and microstructures,versatile properties,together with promising structural and functional applications.However,inferior fracture toughness(KIC)and damage tolerance restricted many practical applications of the HEC.Herein,we addressed this challenge by incorporating a threedimensional graphene–carbon nanotube(3D G–CNT)as toughening agent in(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.The resulting enhanced 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C featured an outstanding toughness of 8.23 MPa·m^(1/2),while remaining superior strength(763 MPa)and hardness(24.7 GPa).An ultralow friction coefficient(0.15)coupled with an ultralow wear rate(w,2.6×10^(−7) mm^(3)/(N·m))in the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C was obtained primarily as a function of lubricating scrolls,in which two-dimensional(2D)graphene acted as a tribolayer,and one-dimensional(1D)carbon nanotubes acted as nano ball bearings embedded inside.Strikingly,the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C exhibited rather low thermal conductivity(κ)yet excellent electrical conductivity(σ,1.3×10^(6) S/m)in comparison with the pure(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.This study provided great potential for maximizing the physical and functional properties of the HEC for various applications.展开更多
文摘Thermoelectric and electronic properties of cubic bi-intermetallics R-Au(R = Tb, Ho. Er. Tm and Yb)compounds were explored. Electronic properties i.e. density of states and band structure were computed using first principles calculations which proved the metallic nature of these compounds. Post-DFT(BoltzTraP) calculations were carried out to explore their thermoelectric properties like electrical conductivities. Seebeck coefficient, electronic thermal conductivities and figure of merit. The highest Seebeck coefficient and figure of merit were found for YbAu among these compounds which are 105 μV/K and 0.285 respectively. All the calculations were carried out at 300 K. Large values of figure of merit obtained for these compounds at room temperature indicate that these materials can be used for thermoelectric devices however need experimental verification.
基金supported by the National Natural Science Foundation of China (No.52005396)Young Talent Fund of University Association for Science and Technology in Shaanxi (No.20210414)Qilu Youth Scholar Project Funding of Shandong University (No.1050522300003).
文摘There has been growing interest in the high-entropy ceramic(HEC)recently owing to its tailorable compositions and microstructures,versatile properties,together with promising structural and functional applications.However,inferior fracture toughness(KIC)and damage tolerance restricted many practical applications of the HEC.Herein,we addressed this challenge by incorporating a threedimensional graphene–carbon nanotube(3D G–CNT)as toughening agent in(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.The resulting enhanced 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C featured an outstanding toughness of 8.23 MPa·m^(1/2),while remaining superior strength(763 MPa)and hardness(24.7 GPa).An ultralow friction coefficient(0.15)coupled with an ultralow wear rate(w,2.6×10^(−7) mm^(3)/(N·m))in the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C was obtained primarily as a function of lubricating scrolls,in which two-dimensional(2D)graphene acted as a tribolayer,and one-dimensional(1D)carbon nanotubes acted as nano ball bearings embedded inside.Strikingly,the 3D G–CNT/(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C exhibited rather low thermal conductivity(κ)yet excellent electrical conductivity(σ,1.3×10^(6) S/m)in comparison with the pure(Hf_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)Zr_(0.2))C.This study provided great potential for maximizing the physical and functional properties of the HEC for various applications.