The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual applicatio...The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.展开更多
Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball ...Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significa...Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.展开更多
To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact f...To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results.展开更多
According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pr...According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pressure has been designed. The interrelations between the thermal contact resistance (TCR) and its influence factors such as contact pressure etc, are obtained. A modified coefficient E is introduced to consider the relative slide in the contact interface. Then the interfacial TCR calculating model, which suits to the special conditions of `high temperature+plastic rheology’ and frictional contact such as continuous roll casting process, is established.展开更多
The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of the...The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of thermal contact resistance through studying the microscale mechanism of heat transfer at the interface. The results show that electron has stronger quantum tunneling effect when the thickness of oxide film is smaller than de Broglie wavelength of electron and the heat conduction of oxide film produces microscale effect. The thickness and nature of oxide film dominate the heat transfer at the metal rheologic interface. The main means to design the interface contact conductance are to control the formation of oxide film as well as the process of machining of roller surface and lubrication of interface.展开更多
The present paper deals with the effect of geometry of filler particles on the effective thermal conductivity for polymer composites. In the earlier models, less emphasis has been given on the shape of filler particle...The present paper deals with the effect of geometry of filler particles on the effective thermal conductivity for polymer composites. In the earlier models, less emphasis has been given on the shape of filler particles. In this paper, expressions for effective thermal conductivity has been derived using the law of minimal thermal resistance and equal law of the specific equivalent thermal conductivity for three different shapes i.e. spherical, elliptical and hexagonal of filler particles respectively. Calculated values of effective thermal conductivity for various samples using the derived expressions then compared with experimental data available and other models developed in the literature. The results calculated are in good agreement with the earlier experimental data and the deviation, is least in our expressions showing the success of the model.展开更多
A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up...A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.展开更多
In the process of two-pass micro plasma arc welding of titanium alloy sheet,based on the thermal contact resistance theory,a three-dimensional transient heat transfer finite element model of contact heat transfer betw...In the process of two-pass micro plasma arc welding of titanium alloy sheet,based on the thermal contact resistance theory,a three-dimensional transient heat transfer finite element model of contact heat transfer between titanium alloy sheet and flexible fixture was established.The effects of contact upper surface temperature,micro-contact thermal resistance,micro-gap thermal resistance,DC and pulse welding on thermal contact resistance were investigated,and the simulation and experimental results were compared.The results show that the thermal contact resistance increases as the temperature increases when the temperature of the contact upper surface (titanium alloy sheet) is in the range of 290-350 K.The effect of micro-contact thermal resistance on the thermal contact resistance is 26.1%-46.3% larger than the micro-gap thermal resistance.The thermal contact resistance of pulse welding is 3.1%-3.5% larger than DC welding.The error of simulation and experimental results of weld pool depth is 8.6%,which verifies the reliability of the model.展开更多
A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) sy...A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate.展开更多
Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surfac...Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.展开更多
The developments of aeronautics and astronautics require engines of higher quality. The temperature distribution in combustion engine is highly influenced by the thermal conduct resistance. To predict the temperature ...The developments of aeronautics and astronautics require engines of higher quality. The temperature distribution in combustion engine is highly influenced by the thermal conduct resistance. To predict the temperature field of the hot-end assemblies of combustion engine, the thermal contact resistance must be considered. The object of the study is to propose a model of high application including in conditions of high temperature and high pressure. Up to date, many models and empirical or semi-empirical correlations have been developed, also researchers designed different test equipments according to specific conditions. This paper presents several representative models and test equipments, compares the merits and drawbacks with each other, and gives recommendations for further research.展开更多
To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact th...To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire.展开更多
Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga A...Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga As Bi films were characterized by Van der Pauw-Hall measurement and transmission line method(TLM)with and without rapid thermal annealing(RTA).It was found that the specific contact resistance decreases gradually with the increase of carrier concentration.The electron concentration exhibits a sharp increase,and the specific contact resistance shows a noticeable reduction after RTA.With RTA,the In Ga As Bi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6×10^(21) cm^(-3) and achieved an ultra-low specific contact resistance of 1×10^(-8)Ω·cm^(2),revealing that contact resistance depends greatly on the tunneling effect.展开更多
The study is carried out in imperfect contact with a concrete slab wall attached to a panel based on rice straw compressed in a dynamic frequency regime. We will propose the characterization of thermal insulation for ...The study is carried out in imperfect contact with a concrete slab wall attached to a panel based on rice straw compressed in a dynamic frequency regime. We will propose the characterization of thermal insulation for thermal resistance of contact (<i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.05 m). The impact of heat exchange coefficients on the front face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0 m) and the rear face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.1 m) on these resistors is shown.</span>展开更多
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode...The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.展开更多
The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of fri...The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of friction and deformation of material was obtained. The model of contact conductance at the rolling interface was obtained by integrating the specific feature of heat transfer through the interface of continuous roll-casting. The results indicate that the real contact area increases obviously when the material is under yield, and the real contact area varies inversely with surface roughness, whereas it varies exponentially with friction coefficient, strain rate and pressure, and the power factor depends on strain rate.展开更多
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, a...For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, a-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnOz on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J.(g.K)-1, thermal conductivity of 9.05 W-(m.K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 ℃ to RT). Key words: SiC-mullite composite ceramics; MnO2; solar sensible thermal storage; non-contact graphite-buried sintering; thermal shock resistance展开更多
In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simu...In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the thermal distribution at the brazed joint zone is related to not only the geometry of the fin and tube, butalso the brazed joint topology. A poor brazed joint will result in very poor heat transfer. Thermal contact resistanceis adopted to analyze the fin heat efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42307189 and 42030701)the China Postdoctoral Science Foundation(Grant No.2023M740974).
文摘The actively heated fiber-optic(AHFO)technology has become emerged as a research focus due to its advantages of distributed,real-time measurement and good durability.These attributes have led to the gradual application of AHFO technology to the water content measurement of in situ soil.However,all existing in situ applications of AHFO technology fail to consider the effect of soilesensor contact quality on water content measurements,limiting potential for the wider application of AHFO technology.To address this issue,the authors propose a method for determining the soilesensor thermal contact resistance based on the principle of an infinite cylindrical heat source.This is then used to establish an AHFO water content measurement technology that considers the thermal contact resistance.The reliability and validity of the new measurement technology are explored through a laboratory test and a field case study,and the spatial-temporal evolution of the soil water content in the case is revealed.The results demonstrate that method for determining the soilesensor thermal contact resistance is highly effective and applicable to all types of soils.This method requires only the moisture content,dry density,and thermal response of the in situ soil to be obtained.In the field case,the measurement error of soil water content between the AHFO method,which takes into account the thermal contact resistance,and the neutron scattering method is only 0.011.The water content of in situ soil exhibits a seasonal variation,with an increase in spring and autumn and a decrease in summer and winter.Furthermore,the response of shallow soils to precipitation and evaporation is significant.These findings contribute to the enhancement of the accuracy of the AHFO technology in the measurement of the water content of in situ soils,thereby facilitating the dissemination and utilization of this technology.
基金Projects(51875008,51505012,51575014)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Aiming at determining the thermal contact resistance of ball screws,a new analytical method combining the minimum excess principle with the MB fractal theory is proposed to estimate thermal contact resistance of ball screws considering microscopic fractal characteristics of contact surfaces.The minimum excess principle is employed for normal stress analysis.Moreover,the MB fractal theory is adopted for thermal contact resistance.The effectiveness of the proposed method is validated by self-designed experiment.The comparison between theoretical and experimental results demonstrates that thermal contact resistance of ball screws can be obtained by the proposed method.On this basis,effects of fractal parameters on thermal contact resistance of ball screws are discussed.Moreover,effects of the axial load on thermal contact resistance of ball screws are also analyzed.The conclusion can be drawn that the thermal contact resistance decreases along with the fractal dimension D increase and it increases along with the scale parameter G increase,and thermal contact resistance of ball screws is retained almost constant along with axial load increase before the preload of the right nut turns into zero in value.The application of the proposed method is also conducted and validated by the temperature measurement on a self-designed test bed.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.
基金Projects(52108347,52178371)supported by the National Natural Science Foundation of ChinaProject(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,China。
文摘Porous materials can be found in a variety of geophysical and engineering applications.The existence of thermal contact resistance at the interface between bilayered saturated porous strata would result in a significant temperature difference at the interface.An attempt is made to study the thermo-hydro-mechanical coupling dynamic response of bilayered saturated porous strata with thermal contact resistance and elastic wave impedance.The corresponding analytical solutions for the dynamic response of bilayered saturated porous strata under a harmonic thermal load are derived by the operator decomposition method,and their rationality is verified by comparing them with existing solutions.The influences of thermal contact resistance,thermal conductivity ratio,and porosity ratio on the dynamic response of bilayered saturated porous strata are systematically investigated.Outcomes disclose that with the increase of thermal contact resistance,the displacement,pore water pressure and stress decrease gradually,and the temperature jump at the interface between two saturated porous strata increases.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204081)
文摘To obtain thermal contact resistance(TCR) between the vertical double-diffused metal-oxide-semiconductor(VDMOS) and the heat sink, we derived the relationship between the total thermal resistance and the contact force imposed on the VDMOS. The total thermal resistance from the chip to the heat sink is measured under different contact forces, and the TCR can be extracted nondestructively from the derived relationship. Finally, the experimental results are compared with the simulation results.
文摘According to the thermodynamic characteristics in the work interface of the plastic forming of metals, a set of TCR (thermal contact resistance) experimental system under the conditions of high temperature and high pressure has been designed. The interrelations between the thermal contact resistance (TCR) and its influence factors such as contact pressure etc, are obtained. A modified coefficient E is introduced to consider the relative slide in the contact interface. Then the interfacial TCR calculating model, which suits to the special conditions of `high temperature+plastic rheology’ and frictional contact such as continuous roll casting process, is established.
文摘The main factors and their varied disciplines affecting the heat transfer at the metal rheologic interface were studied from the waveguide mechanism of heat transfer of electrons and phonons, guiding the design of thermal contact resistance through studying the microscale mechanism of heat transfer at the interface. The results show that electron has stronger quantum tunneling effect when the thickness of oxide film is smaller than de Broglie wavelength of electron and the heat conduction of oxide film produces microscale effect. The thickness and nature of oxide film dominate the heat transfer at the metal rheologic interface. The main means to design the interface contact conductance are to control the formation of oxide film as well as the process of machining of roller surface and lubrication of interface.
文摘The present paper deals with the effect of geometry of filler particles on the effective thermal conductivity for polymer composites. In the earlier models, less emphasis has been given on the shape of filler particles. In this paper, expressions for effective thermal conductivity has been derived using the law of minimal thermal resistance and equal law of the specific equivalent thermal conductivity for three different shapes i.e. spherical, elliptical and hexagonal of filler particles respectively. Calculated values of effective thermal conductivity for various samples using the derived expressions then compared with experimental data available and other models developed in the literature. The results calculated are in good agreement with the earlier experimental data and the deviation, is least in our expressions showing the success of the model.
基金supported by the National Natural Science Foundation of China(Grant No. 10872104)the Fundamental Research Funds for the Central Universities(Grant No. FRF-BR-10.007A)
文摘A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.
基金This work was supported by the Hebei Provincial Natural Science Fund Key Project(F2017202243)Hebei Provincial Natural Science Fund(E2019202132)+3 种基金Tianjin Natural Science Foundation(18JCTPJC54700)Hebei Province Higher Education Science and Technology Research Project(BJ2019049)China Postdoctoral Science Foundation(2018M641616)National Natural Science Foundation of China(51705128).
文摘In the process of two-pass micro plasma arc welding of titanium alloy sheet,based on the thermal contact resistance theory,a three-dimensional transient heat transfer finite element model of contact heat transfer between titanium alloy sheet and flexible fixture was established.The effects of contact upper surface temperature,micro-contact thermal resistance,micro-gap thermal resistance,DC and pulse welding on thermal contact resistance were investigated,and the simulation and experimental results were compared.The results show that the thermal contact resistance increases as the temperature increases when the temperature of the contact upper surface (titanium alloy sheet) is in the range of 290-350 K.The effect of micro-contact thermal resistance on the thermal contact resistance is 26.1%-46.3% larger than the micro-gap thermal resistance.The thermal contact resistance of pulse welding is 3.1%-3.5% larger than DC welding.The error of simulation and experimental results of weld pool depth is 8.6%,which verifies the reliability of the model.
基金the National Natural Science Foundation of China under Grant Nos. 59995550-5 , 90207003.
文摘A genetic algorithm (GA) was studied to simultaneously determine the thermal transport properties and the contact resistance of thin films deposited on a thick substrate. A pulsed photothermal reflectance (PPR) system was employed for the measurements. The GA was used to extract the thermal properties. Measurements were performed on SiO2 thin films of different thicknesses on silicon substrate. The results show that the GA accompanied with the PPR system is useful for the simultaneous determination of thermal properties of thin films on a substrate.
文摘Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.
文摘The developments of aeronautics and astronautics require engines of higher quality. The temperature distribution in combustion engine is highly influenced by the thermal conduct resistance. To predict the temperature field of the hot-end assemblies of combustion engine, the thermal contact resistance must be considered. The object of the study is to propose a model of high application including in conditions of high temperature and high pressure. Up to date, many models and empirical or semi-empirical correlations have been developed, also researchers designed different test equipments according to specific conditions. This paper presents several representative models and test equipments, compares the merits and drawbacks with each other, and gives recommendations for further research.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708028)the Postdoctoral Foundation of Heilongjiang Province(GrantNo.LBH-Q07048)
文摘To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705277 and 61434006)the Project of Hubei University of Arts and Science(Grant No.XK2019053)。
文摘Carbon-doped In Ga As Bi films on In P:Fe(100)substrates have been grown by gas source molecular beam epitaxy(GSMBE).The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped In Ga As Bi films were characterized by Van der Pauw-Hall measurement and transmission line method(TLM)with and without rapid thermal annealing(RTA).It was found that the specific contact resistance decreases gradually with the increase of carrier concentration.The electron concentration exhibits a sharp increase,and the specific contact resistance shows a noticeable reduction after RTA.With RTA,the In Ga As Bi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6×10^(21) cm^(-3) and achieved an ultra-low specific contact resistance of 1×10^(-8)Ω·cm^(2),revealing that contact resistance depends greatly on the tunneling effect.
文摘The study is carried out in imperfect contact with a concrete slab wall attached to a panel based on rice straw compressed in a dynamic frequency regime. We will propose the characterization of thermal insulation for thermal resistance of contact (<i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.05 m). The impact of heat exchange coefficients on the front face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0 m) and the rear face (</span><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"> = 0.1 m) on these resistors is shown.</span>
基金supported by National Natural Science Foundation of China (Grant Nos. 50975276,50475164)National Basic Research Program of China (973 Program,Grant No. 2007CB607605)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
基金Project(1999064906) supported by the National Key Fundamental Research and Development of China
文摘The effects of surface roughness, strain rate, friction coefficient and pressure on real contact area were analyzed based on the research of Stupkiewicz. The real contact area model taking account of the effect of friction and deformation of material was obtained. The model of contact conductance at the rolling interface was obtained by integrating the specific feature of heat transfer through the interface of continuous roll-casting. The results indicate that the real contact area increases obviously when the material is under yield, and the real contact area varies inversely with surface roughness, whereas it varies exponentially with friction coefficient, strain rate and pressure, and the power factor depends on strain rate.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, a-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnOz on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J.(g.K)-1, thermal conductivity of 9.05 W-(m.K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 ℃ to RT). Key words: SiC-mullite composite ceramics; MnO2; solar sensible thermal storage; non-contact graphite-buried sintering; thermal shock resistance
基金This research work was supported by the National Science Foundations of USA through the NSF Grant DMI-9908319. The research support from Center for Robotics and Manufacturing Systems, University of Kentucky, was greatly acknowledged.
文摘In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the thermal distribution at the brazed joint zone is related to not only the geometry of the fin and tube, butalso the brazed joint topology. A poor brazed joint will result in very poor heat transfer. Thermal contact resistanceis adopted to analyze the fin heat efficiency.