Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of...Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.展开更多
It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understa...It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understanding of structure–property correlation is critical to the design of engineering materials.3D printing appears as a mature method to effectively produce micro-structured materials.In this work,we created different stainless-steel microstructures by adjusting the speed of 3D printing and studied the relationship between thermal property and printing speed.Our microstructure study demonstrates that highly porous structures appear at higher speeds,and there is a nearly linear relationship between porosity and printing speed.The thermal conductivity of samples fabricated by different printing speeds is characterized.Then,the correlation between porosity,thermal conductivity,and scanning speed is established.Based on this correlation,the thermal conductivity of a sample can be predicted from its printing speed.We fabricated a new sample at a different speed,and the thermal conductivity measurement agrees well with the value predicted from the correlation.To explore thermal transport physics,the effects of pore structure and temperature on the thermal performance of the printed block are also studied.Our work demonstrates that the combination of the 3D printing technique and the printing speed control can regulate the thermophysical properties of materials.展开更多
This study investigates the application of a drop-on-demand(DOD)thermal inkjet(TIJ)-based bioprinting system for the fabrication of cell-laden hydrogel microparticles(HMPs)with tunable sizes.The TIJ bioprinting techni...This study investigates the application of a drop-on-demand(DOD)thermal inkjet(TIJ)-based bioprinting system for the fabrication of cell-laden hydrogel microparticles(HMPs)with tunable sizes.The TIJ bioprinting technique involves the formation of vapor bubbles within the print chamber through thermal energy,expelling small droplets of bio-ink onto a substrate.The study employs a heat-treated saponified gelatin-based bio-ink,HSP-GelMA.This bio-ink is modified through methacrylic anhydride functionalization and undergoes subsequent saponification and heat treatment processes.Various concentrations of SPAN 80 surfactant in mineral oil were evaluated to assess their influence on HMP size and stability.The results indicate a direct correlation,with higher SPAN 80 concentrations resulting in smaller and more stable HMPs.The study further investigates the influence of jetting volume on HMP size distribution,revealing that larger jetting volumes lead to increased HMP sizes,attributed to droplet coalescence.This is supported by our further study via a Monte Carlo simulation,which shows that the mean droplet diameter grows approximately linear with the number of dispensed droplets.In addition,the study demonstrates the capability of the TIJ bioprinting system to achieve multimaterial encapsulation within HMPs,exemplified by staining living cells with distinct cytoplasmic membrane dyes.The presented approach provides insights into the controlled fabrication of cell-laden HMPs,highlighting the versatility of the TIJ bioprinting system for potential applications in tissue engineering and drug delivery.展开更多
Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cy...Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.展开更多
A thermal via has been used to enhance the heat transfer through the printed circuit board (PCB). Because the thermal conductivity of a dielectric material is very low, the array of metal vias is placed to make therma...A thermal via has been used to enhance the heat transfer through the printed circuit board (PCB). Because the thermal conductivity of a dielectric material is very low, the array of metal vias is placed to make thermal paths in the PCB. This paper describes the numerical analysis of the PCB having metal vias and focuses on the heat transfer characteristics under the nonisothermal boundary conditions. The mathematical model of the PCB has the metal vias between two metal sheets. Under 2nd and 3rd kinds of boundary conditions, the temperature distribution is obtained numerically by changing the design parameters. The discussion is also made on the effective thermal conductivity of the PCB. In industry, the use of effective thermal conductivity is convenient for thermal engineers because it simplifies the calculation process, that is, the composite board can be modeled as a homogeneous medium. From the numerical results, it is confirmed that the placement of metal sheets and the population of metal vias are important factors to dominate the heat transfer characteristics of the PCB. It is also shown that although the nonisothermal boundary conditions are applied at the boundary surface, the temperature difference between the heated and the cooled section is almost uniform when the metal vias are populated densely with the metal sheets. In this case, the effective thermal conductivity of the PCB is found to be the same irrespective of the boundary conditions, that is, whether the isothermal or the nonisothermal boundary conditions are applied.展开更多
One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures.This work proposed a new protocol for preformulatio...One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures.This work proposed a new protocol for preformulation studies simulating thermal processing and aging of the printed medicines,tested regarding their morphology and thermal,crystallographic,and spectroscopic profiles.Generally,despite the strong drug-polymer interactions observed,the chemical stability of the model drugs was preserved under such conditions.In fact,in the metoprolol and Soluplus®composition,the drug's solubilization in the polymer produced a delay in the drug decomposition,suggesting a protective effect of the matrix.Paracetamol and polyvinyl alcohol mixture,in turn,showed unmistakable signs of thermal instability and chemical decomposition,in addition to physical changes.In the presented context,establishing protocols that simulate processing and storage conditions may be decisive for obtaining stable pharmaceutical dosage forms using three-dimensional printing technology.展开更多
Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve th...Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve the stability of the thermal print head during printing,and at the same time to solve the inefficiency of the traditional single-chip microcomputer control of the thermal print head heating method,a field programmable gate array-based thermal print head heating control method is proposed.To control the core,the intelligent fuzzy Proportional-Integral-Differential(PID)control algorithm is used to ensure that the temperature of the print head can be stabilized quickly.Through simulation and experimental verification,it is shown that the intelligent fuzzy PID control algorithm greatly improves the temperature stabilization effect,and the time required to reach stability short not only improve the printing accuracy but also extend the life of the print head.展开更多
The demand for the swirl nozzle with enhanced temperature resistance and lightweight properties is in-creasing as the thrust-to-weight ratio of aero-engines rises.The Al_(2)O_(3) ceramic swirl nozzle can maintain high...The demand for the swirl nozzle with enhanced temperature resistance and lightweight properties is in-creasing as the thrust-to-weight ratio of aero-engines rises.The Al_(2)O_(3) ceramic swirl nozzle can maintain high strength in a hostile environment of high temperature and severe corrosion,while also meeting the requirements of aircraft to enhance efficiency and decrease weight.However,Al_(2)O_(3) ceramics are limited in their application for aerospace components due to their poor thermal shock resistance(TSR)stemming from their inherent brittleness.This work reported an innovative design and fabrication strategy based on photopolymerization 3D printing technology to realize the three-dimensional shell structure through element interdiffusion and nanoscale stacking of the reinforced phase.With this strategy,a novel type of the new dual-structure Al_(2)O_(3) ceramic composed of MgAl_(2)O_(4) shell structure and matrix could be con-structed in situ.The nano-sized MgAl_(2)O_(4) caused a crack passivation effect after the thermal shock,which could improve the strength and TSR of 3D-printed Al_(2)O_(3) ceramic.In addition,the effects of MgO content and sintering temperature on sintering behavior,flexural strength,porosity,and TSR of Al_(2)O_(3) ceram-ics manufactured by digital light processing(DLP)processing were systematically studied.The optimum overall performance of Al_(2)O_(3) ceramics was obtained at the sintering temperature of 1550℃and the MgO content of 1.0 wt.%,with a maximum flexural strength of 111.929 MPa and a critical temperature difference of 374.24℃for TSR.Based on the above research,an aero-engine swirl nozzle with high ther-mal shock resistance has been successfully prepared by ceramic 3D printing technology,which enhances high-temperature resistance and promotes lightweight design in aero-engine.展开更多
基金Funed by the National Key Research and Development Program of China(No.2021YFA0715700)the Open Fund of Hubei Longzhong Laboratory。
文摘Polyacrylic acid(PAA)hydrogel composites with different hexagonal boron nitride(h-BN)fillers were synthesized and successfully 3D-printed while their thermal conductivity was systematically studied.With the content of h-BN increasing from 0.1 wt%to 0.3 wt%,the thermal conductivity of the 3D-printed composites has been improved.Moreover,through the shear force given by the 3D printer,a complete thermal conductivity path is obtained inside the hydrogel,which significantly improves the thermal conductivity of the h-BN hydrogel composites.The maximum thermal conductivity is 0.8808 W/(m·K),leading to a thermal conductive enhancement of 1000%,compared with the thermal conductivity of pure PAA hydrogels.This study shows that using h-BN fillers can effectively and significantly improve the thermal conductivity of hydrogelbased materials while its 3D-printable ability has been maintained.
基金supported by the National Key R&D Program of China(Nos.2018YFB1106100,2019YFE0119900)the National Natural Science Foundation of China(No.52076156)the Fundamental Research Funds for the Central Universities(No.2042020kf0194)。
文摘It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications.Since the property of a material is highly dependent on its inner structure,the understanding of structure–property correlation is critical to the design of engineering materials.3D printing appears as a mature method to effectively produce micro-structured materials.In this work,we created different stainless-steel microstructures by adjusting the speed of 3D printing and studied the relationship between thermal property and printing speed.Our microstructure study demonstrates that highly porous structures appear at higher speeds,and there is a nearly linear relationship between porosity and printing speed.The thermal conductivity of samples fabricated by different printing speeds is characterized.Then,the correlation between porosity,thermal conductivity,and scanning speed is established.Based on this correlation,the thermal conductivity of a sample can be predicted from its printing speed.We fabricated a new sample at a different speed,and the thermal conductivity measurement agrees well with the value predicted from the correlation.To explore thermal transport physics,the effects of pore structure and temperature on the thermal performance of the printed block are also studied.Our work demonstrates that the combination of the 3D printing technique and the printing speed control can regulate the thermophysical properties of materials.
基金NTU Presidential Postdoctoral FellowshipRIE2020 Industry Alignment Fund—Industry Collaboration Projects。
文摘This study investigates the application of a drop-on-demand(DOD)thermal inkjet(TIJ)-based bioprinting system for the fabrication of cell-laden hydrogel microparticles(HMPs)with tunable sizes.The TIJ bioprinting technique involves the formation of vapor bubbles within the print chamber through thermal energy,expelling small droplets of bio-ink onto a substrate.The study employs a heat-treated saponified gelatin-based bio-ink,HSP-GelMA.This bio-ink is modified through methacrylic anhydride functionalization and undergoes subsequent saponification and heat treatment processes.Various concentrations of SPAN 80 surfactant in mineral oil were evaluated to assess their influence on HMP size and stability.The results indicate a direct correlation,with higher SPAN 80 concentrations resulting in smaller and more stable HMPs.The study further investigates the influence of jetting volume on HMP size distribution,revealing that larger jetting volumes lead to increased HMP sizes,attributed to droplet coalescence.This is supported by our further study via a Monte Carlo simulation,which shows that the mean droplet diameter grows approximately linear with the number of dispensed droplets.In addition,the study demonstrates the capability of the TIJ bioprinting system to achieve multimaterial encapsulation within HMPs,exemplified by staining living cells with distinct cytoplasmic membrane dyes.The presented approach provides insights into the controlled fabrication of cell-laden HMPs,highlighting the versatility of the TIJ bioprinting system for potential applications in tissue engineering and drug delivery.
基金supported by the National Key Researchand Development Programof China(No.2022YFB4600101)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470303)+2 种基金the National Natural Science Foundation of China(No.21974057)the Western Light Project of Chinese Academy of Sciences(No.xbzg-zdsy-202007)the Oasis Scholar of Shihezi University and the Central Government to Guide Local Technological Development(No.23ZYQA315).
文摘Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.
文摘A thermal via has been used to enhance the heat transfer through the printed circuit board (PCB). Because the thermal conductivity of a dielectric material is very low, the array of metal vias is placed to make thermal paths in the PCB. This paper describes the numerical analysis of the PCB having metal vias and focuses on the heat transfer characteristics under the nonisothermal boundary conditions. The mathematical model of the PCB has the metal vias between two metal sheets. Under 2nd and 3rd kinds of boundary conditions, the temperature distribution is obtained numerically by changing the design parameters. The discussion is also made on the effective thermal conductivity of the PCB. In industry, the use of effective thermal conductivity is convenient for thermal engineers because it simplifies the calculation process, that is, the composite board can be modeled as a homogeneous medium. From the numerical results, it is confirmed that the placement of metal sheets and the population of metal vias are important factors to dominate the heat transfer characteristics of the PCB. It is also shown that although the nonisothermal boundary conditions are applied at the boundary surface, the temperature difference between the heated and the cooled section is almost uniform when the metal vias are populated densely with the metal sheets. In this case, the effective thermal conductivity of the PCB is found to be the same irrespective of the boundary conditions, that is, whether the isothermal or the nonisothermal boundary conditions are applied.
基金supported by the Brazilian agencies DPI/UnB,FAP-DF(Grant No.:193.001.741/2017),and CNPq(Grant No.:408291/2018e4).
文摘One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures.This work proposed a new protocol for preformulation studies simulating thermal processing and aging of the printed medicines,tested regarding their morphology and thermal,crystallographic,and spectroscopic profiles.Generally,despite the strong drug-polymer interactions observed,the chemical stability of the model drugs was preserved under such conditions.In fact,in the metoprolol and Soluplus®composition,the drug's solubilization in the polymer produced a delay in the drug decomposition,suggesting a protective effect of the matrix.Paracetamol and polyvinyl alcohol mixture,in turn,showed unmistakable signs of thermal instability and chemical decomposition,in addition to physical changes.In the presented context,establishing protocols that simulate processing and storage conditions may be decisive for obtaining stable pharmaceutical dosage forms using three-dimensional printing technology.
文摘Thermal print head heating real-time temperature fluctuations are too large,often causing damage to the print head heating point,resulting in poor print quality and unsatisfactory print results.Therefore,to improve the stability of the thermal print head during printing,and at the same time to solve the inefficiency of the traditional single-chip microcomputer control of the thermal print head heating method,a field programmable gate array-based thermal print head heating control method is proposed.To control the core,the intelligent fuzzy Proportional-Integral-Differential(PID)control algorithm is used to ensure that the temperature of the print head can be stabilized quickly.Through simulation and experimental verification,it is shown that the intelligent fuzzy PID control algorithm greatly improves the temperature stabilization effect,and the time required to reach stability short not only improve the printing accuracy but also extend the life of the print head.
基金National Key Research and Development Program of China(No.2017YFA0700704)National Defense Basic Scientific Research Program of China(Grant No.JCKY2022130C005)+3 种基金National Natural Science Foundation of China(No.U22A20129)National Science and Technology Major Project(No.2017-VI-0002–0072)National Key Research and Development Program of China(No.2018YFB1106600)Students’Innovation and Entrepreneurship Foundation of USTC(Nos.CY2022G10 and CY2022C24)。
文摘The demand for the swirl nozzle with enhanced temperature resistance and lightweight properties is in-creasing as the thrust-to-weight ratio of aero-engines rises.The Al_(2)O_(3) ceramic swirl nozzle can maintain high strength in a hostile environment of high temperature and severe corrosion,while also meeting the requirements of aircraft to enhance efficiency and decrease weight.However,Al_(2)O_(3) ceramics are limited in their application for aerospace components due to their poor thermal shock resistance(TSR)stemming from their inherent brittleness.This work reported an innovative design and fabrication strategy based on photopolymerization 3D printing technology to realize the three-dimensional shell structure through element interdiffusion and nanoscale stacking of the reinforced phase.With this strategy,a novel type of the new dual-structure Al_(2)O_(3) ceramic composed of MgAl_(2)O_(4) shell structure and matrix could be con-structed in situ.The nano-sized MgAl_(2)O_(4) caused a crack passivation effect after the thermal shock,which could improve the strength and TSR of 3D-printed Al_(2)O_(3) ceramic.In addition,the effects of MgO content and sintering temperature on sintering behavior,flexural strength,porosity,and TSR of Al_(2)O_(3) ceram-ics manufactured by digital light processing(DLP)processing were systematically studied.The optimum overall performance of Al_(2)O_(3) ceramics was obtained at the sintering temperature of 1550℃and the MgO content of 1.0 wt.%,with a maximum flexural strength of 111.929 MPa and a critical temperature difference of 374.24℃for TSR.Based on the above research,an aero-engine swirl nozzle with high ther-mal shock resistance has been successfully prepared by ceramic 3D printing technology,which enhances high-temperature resistance and promotes lightweight design in aero-engine.