Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of inter...Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of interest in this region are the distribution of temperature, density and pressure, velocity and gas mass flow along the electric arc axis, as well as the distribution of electric stress between contacts Calculation of steady SF_6 gas flow through the nozzle of a 420 kV circuit breaker at the current zero instant, for different arcing durations, was carried out using a commercial CFD (computational fluid dynamics) simulation tool. The calculation results were used to get insight into improvement possibilities of the SF_6 gas flow model used in the software for computer simulation of HV (high-voltage) circuit breakers. Electric field calculation results were performed for the same 420 kV circuit breaker, in order to estimate the breakdown voltage at the current zero instant.展开更多
高压SF6断路器弧触头的接触电阻和质量损失预测在断路器状态评估中起着重要作用。该文提出了一种基于量子粒子群优化和支持向量回归(quantum particle swarms optimization and support vector regression,QPSO-SVR)的方法,能够有效预...高压SF6断路器弧触头的接触电阻和质量损失预测在断路器状态评估中起着重要作用。该文提出了一种基于量子粒子群优化和支持向量回归(quantum particle swarms optimization and support vector regression,QPSO-SVR)的方法,能够有效预测断路器弧触头在不同电弧电流条件下的接触电阻增量和质量损失,并结合实验数据获得了SVR算法的最佳训练参数。将该文方法与其他预测方法进行比较,QPSO-SVR方法对不同电弧电流条件下的实验数据表现出良好的预测能力。其中,对于接触电阻增量的预测相对误差为3.023%,而对于质量损失的预测相对误差为4.61%,均表现出较好的鲁棒性。最后将QPSO-SVR预测得到的质量损失和接触电阻增量以及监测到的累积电弧能量进行模糊逻辑推理,构建了基于QPSO-SVR算法的触头烧蚀状态评估系统,将触头烧蚀状态分为O级烧蚀、Ⅰ级烧蚀、Ⅱ级烧蚀、Ⅲ级烧蚀4等级,可为高压SF6断路器检修提供参考。展开更多
文摘Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of interest in this region are the distribution of temperature, density and pressure, velocity and gas mass flow along the electric arc axis, as well as the distribution of electric stress between contacts Calculation of steady SF_6 gas flow through the nozzle of a 420 kV circuit breaker at the current zero instant, for different arcing durations, was carried out using a commercial CFD (computational fluid dynamics) simulation tool. The calculation results were used to get insight into improvement possibilities of the SF_6 gas flow model used in the software for computer simulation of HV (high-voltage) circuit breakers. Electric field calculation results were performed for the same 420 kV circuit breaker, in order to estimate the breakdown voltage at the current zero instant.
文摘高压SF6断路器弧触头的接触电阻和质量损失预测在断路器状态评估中起着重要作用。该文提出了一种基于量子粒子群优化和支持向量回归(quantum particle swarms optimization and support vector regression,QPSO-SVR)的方法,能够有效预测断路器弧触头在不同电弧电流条件下的接触电阻增量和质量损失,并结合实验数据获得了SVR算法的最佳训练参数。将该文方法与其他预测方法进行比较,QPSO-SVR方法对不同电弧电流条件下的实验数据表现出良好的预测能力。其中,对于接触电阻增量的预测相对误差为3.023%,而对于质量损失的预测相对误差为4.61%,均表现出较好的鲁棒性。最后将QPSO-SVR预测得到的质量损失和接触电阻增量以及监测到的累积电弧能量进行模糊逻辑推理,构建了基于QPSO-SVR算法的触头烧蚀状态评估系统,将触头烧蚀状态分为O级烧蚀、Ⅰ级烧蚀、Ⅱ级烧蚀、Ⅲ级烧蚀4等级,可为高压SF6断路器检修提供参考。