A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction...A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction between two neighboring diodes in array devices is the heat conduction through heat sink. We hold that as the devices must have heat sink to diffuse heat, this kind of interaction in the array would always exist. However, when the pitch between two neighboring diodes in the array is reasonably defined, this troublesome thermal interaction can be simply reduced by using our model. Based on the individual diodes with leaky waveguide structure, we experimentally succeeded in fabricating 2D 4 ×4 arrays. The thermal interaction between upper and lower diodes in the 2D array is also considered as well as the function of the heat sink. The measured results show that the pulse peak output powor of the 2D 4 ×4 array is high up to 11 W.展开更多
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300...The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300 ℃,muscovite has no effect on the thermaldecomposition of APP,and the initialdecomposition temperature of APP/muscovite at 283 ℃ is basically the same as the APP at 295 ℃,and the main thermaldecomposition products are polyphosphoric acid and NH_4H_2PO_4 at 300 ℃.The polyphosphoric acid,the decomposition products of APP,can enable K and Siout of muscovite and interact with muscovite chemically to generate Al_2O_3·2SiO_2,α-SiO_2 and phosphates(AlPO_4 and K_5P_3O_(10))compounds during 400 ℃-800 ℃,which own obvious adhesive phenomenon and porous structure with the apparent porosity of 58.4%.Further reactions between phosphates other than reactions among Al_2O_3·2SiO_2 and α-SiO_2 can generate KAlP_2O_7 at 1 000 ℃ and the density of residualproduct is improved by low melting point phosphate filling pore to form relatively dense structure and decrease the apparent porosity to 44.4%.The flame resistant and self-supported ceramic materials are expected to enhance the fire-retarding synergistic effect between APP and muscovite.展开更多
This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible Na...This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and展开更多
Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methan...Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methanone(DTCBPY) is theoretically studied by using the density functional theory(DFT) and time-dependent density functional theory(TD-DFT).Four conformations(named as A, B, C, and D) of the DTCBPY can be found by relax scanning, and the configuration C corresponds to the luminescent molecule detected experimentally. Besides, we calculate the proportion of each conformation by Boltzmann distribution, high configuration ratios(44% and 52%) can be found for C and D. Moreover, C and D are found to exist with an intramolecular π-π interaction between one donor and the acceptor; the intramolecular interaction brings a smaller Huang-Rhys factor and reduced reorganization energy. Our work presents a rational explanation for the experimental results and demonstrates the importance of the intramolecular π-π interaction to the photophysical properties of TADF molecules.展开更多
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,...A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.展开更多
A reined global-local approach based on the scaled boundary inite element method(SBFEM) is proposed to improve the accuracy of predicted singular stress ield. The proposed approach is carried out in conjunction with...A reined global-local approach based on the scaled boundary inite element method(SBFEM) is proposed to improve the accuracy of predicted singular stress ield. The proposed approach is carried out in conjunction with two steps. First, the entire structure is analyzed by employing an arbitrary numerical method. Then, the interested region, which contains stress singularity, is re-solved using the SBFEM by placing the scaling center right at the singular stress point with the boundary conditions evaluated from the irst step imposed along the whole boundary including the side-faces. Beneiting from the semi-analytical nature of the SBFEM, the singular stress ield can be predicted accurately without highly reined meshes. It provides the FEM or other numerical methods with a rather simple and convenient way to improve the accuracy of stress analysis. Numerical examples validate the effectiveness of the proposed approach in dealing with various kinds of problems.展开更多
In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The ...In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The present study is based on the use of the three-dimensional theory of elasticity.Three displacement potential functions are introduced to uncouple the equations of motion and the heat and electric conductions.The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied based on Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity.The frequency equations of the coupled system consisting of cylinder and fluid are developed under the assumption of perfectslip boundary conditions at the fluid-solid interfaces,which are obtained for longitudinal and flexural modes of vibration and are studied numerically for PZT-4 material bar immersed in fluid.The computed non-dimensional frequencies are compared with Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity for longitudinal and flexural modes of vibrations.The dispersion curves are drawn for longitudinal and flexural modes of vibrations.Moreover,the dispersion of specific loss and damping factors are also analyzed for longitudinal and flexural modes of vibrations.展开更多
文摘A novel theoretical model of thermal diffusion has been established to study thermal interaction between two neighboring diodes in semiconductor laser arrays. The main cause of the ocurrence of the thermal interaction between two neighboring diodes in array devices is the heat conduction through heat sink. We hold that as the devices must have heat sink to diffuse heat, this kind of interaction in the array would always exist. However, when the pitch between two neighboring diodes in the array is reasonably defined, this troublesome thermal interaction can be simply reduced by using our model. Based on the individual diodes with leaky waveguide structure, we experimentally succeeded in fabricating 2D 4 ×4 arrays. The thermal interaction between upper and lower diodes in the 2D array is also considered as well as the function of the heat sink. The measured results show that the pulse peak output powor of the 2D 4 ×4 array is high up to 11 W.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金Funded by the National Natural Science Foundation of China(No.51472188)
文摘The interaction mechanism and phase evolution of ammonium polyphosphate(APP)mixed with muscovite(APP/muscovite)were studied by TG,XRD and SEM,respectively,during heating.When the temperature is not higher than 300 ℃,muscovite has no effect on the thermaldecomposition of APP,and the initialdecomposition temperature of APP/muscovite at 283 ℃ is basically the same as the APP at 295 ℃,and the main thermaldecomposition products are polyphosphoric acid and NH_4H_2PO_4 at 300 ℃.The polyphosphoric acid,the decomposition products of APP,can enable K and Siout of muscovite and interact with muscovite chemically to generate Al_2O_3·2SiO_2,α-SiO_2 and phosphates(AlPO_4 and K_5P_3O_(10))compounds during 400 ℃-800 ℃,which own obvious adhesive phenomenon and porous structure with the apparent porosity of 58.4%.Further reactions between phosphates other than reactions among Al_2O_3·2SiO_2 and α-SiO_2 can generate KAlP_2O_7 at 1 000 ℃ and the density of residualproduct is improved by low melting point phosphate filling pore to form relatively dense structure and decrease the apparent porosity to 44.4%.The flame resistant and self-supported ceramic materials are expected to enhance the fire-retarding synergistic effect between APP and muscovite.
文摘This paper presents a monolithic approach to the thermal fluidstructure interaction (FSI) with nonconforming interfaces. The thermal viscous flow is governed by the Boussinesq approximation and the incompressible NavierStokes equations. The motion of the fluid domain is accounted for by an arbitrary LagrangianEulerian (ALE) strategy. A pseudosolid formulation is used to manage the deformation of the fluid do main. The structure is described by the geometrically nonlinear thermoelastic dynamics. An efficient data transfer strategy based on the Gauss points is proposed to guarantee the equilibrium of the stresses and heat along the interface. The resulting strongly coupled set of nonlinear equations for the fluid, solution procedure. A numerical example efficiency of the methodology. structure, and heat is solved by a monolithic is presented to demonstrate the robustness and
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374195 and 21403133)Taishan Scholar Project of Shandong Normal University,China+1 种基金the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(Grant No.BS2014cl001)the China Postdoctoral Science Foundation(Grant No.2014M560571)
文摘Influence of intramolecular π-π interaction on the luminescent properties of thermally activated delayed fluorescence(TADF) molecule(3, 5-bis(3,6-di-tert-butyl-9 H-carbazol-9-yl)-phenyl)(pyridin-4-yl) methanone(DTCBPY) is theoretically studied by using the density functional theory(DFT) and time-dependent density functional theory(TD-DFT).Four conformations(named as A, B, C, and D) of the DTCBPY can be found by relax scanning, and the configuration C corresponds to the luminescent molecule detected experimentally. Besides, we calculate the proportion of each conformation by Boltzmann distribution, high configuration ratios(44% and 52%) can be found for C and D. Moreover, C and D are found to exist with an intramolecular π-π interaction between one donor and the acceptor; the intramolecular interaction brings a smaller Huang-Rhys factor and reduced reorganization energy. Our work presents a rational explanation for the experimental results and demonstrates the importance of the intramolecular π-π interaction to the photophysical properties of TADF molecules.
基金supported by the National Natural Science Foundation of China(51506160,11472208,11472209)China Post-Doctoral Science Foundation Project(2015M580845)+1 种基金the Fundamental Research Funds for Xi’an Jiaotong University(xjj2015102)the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01)
文摘A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.
基金supported by the National Key Research and Development plan (Grant No. 2016YFB0201001)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421064)the National Natural Science Foundation of China (Grant No. 51138001)
文摘A reined global-local approach based on the scaled boundary inite element method(SBFEM) is proposed to improve the accuracy of predicted singular stress ield. The proposed approach is carried out in conjunction with two steps. First, the entire structure is analyzed by employing an arbitrary numerical method. Then, the interested region, which contains stress singularity, is re-solved using the SBFEM by placing the scaling center right at the singular stress point with the boundary conditions evaluated from the irst step imposed along the whole boundary including the side-faces. Beneiting from the semi-analytical nature of the SBFEM, the singular stress ield can be predicted accurately without highly reined meshes. It provides the FEM or other numerical methods with a rather simple and convenient way to improve the accuracy of stress analysis. Numerical examples validate the effectiveness of the proposed approach in dealing with various kinds of problems.
文摘In this paper,a mathematical model is developed to study the wave propagation in an infinite,homogeneous,transversely isotropic thermo-piezoelectric solid bar of circular cross-sections immersed in inviscid fluid.The present study is based on the use of the three-dimensional theory of elasticity.Three displacement potential functions are introduced to uncouple the equations of motion and the heat and electric conductions.The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied based on Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity.The frequency equations of the coupled system consisting of cylinder and fluid are developed under the assumption of perfectslip boundary conditions at the fluid-solid interfaces,which are obtained for longitudinal and flexural modes of vibration and are studied numerically for PZT-4 material bar immersed in fluid.The computed non-dimensional frequencies are compared with Lord-Shulman,Green-Lindsay and Classical theory theories of thermo elasticity for longitudinal and flexural modes of vibrations.The dispersion curves are drawn for longitudinal and flexural modes of vibrations.Moreover,the dispersion of specific loss and damping factors are also analyzed for longitudinal and flexural modes of vibrations.