Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective ap...Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective approach to protecting LIBs from thermal runaway.In this work,we developed a thermal shutdown separator by coating a thin layer of low-density polyethylene microspheres(PM)onto a commercial porous polypropylene(PP)membrane and investigated the thermal response behaviors of the as-prepared PM/PP separator in LIBs.The structural and thermal analysis results revealed that the coated PM layer had a porous structure,which facilitated the occurrence of normal charge-discharge reactions at ambient temperature,although it could melt completely and fuse together within very short time periods:3 s at 110℃and 1 s at 120℃,to block off the pores of the PP substrate,thereby cutting off the ion transportation between the electrodes and interrupting the battery reaction.Consequently,the PM/PP separator exhibits very similar electrochemical performance to that of a conventional separator at ambient temperature.However,it performs a rapid thermal shutdown at an elevated temperature of^110℃,thus controlling the temperature rise and maintaining the cell in a safe status.Due to its synthetic simplicity and low cost,this separator shows promise for possible application in building safe LIBs.展开更多
Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-a...Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.展开更多
An experimental study on the photocarrier radiometry signals of As^+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion imp...An experimental study on the photocarrier radiometry signals of As^+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion implantation dose (1×10^11-1×10^16/cm^2), implantation energy (20-140 keV) and subsequent isochronical annealing temperature (500- 1100℃ are investigated. The results show that photocarrier radiometry signals are greatly enhanced for implanted samples annealed at high temperature, especially for those with a high implantation dose. The reduced surface recombination rate resulting from a high built-in electric field generated by annealing-activated impurities in the pn junction is believed to be responsible for the photocarrier radiometry signal enhancement. Photocarrier radiometry is contactless and can therefore be used as an effective in-line tool for the thermal annealing process monitoring of the ion-implanted wafers in semiconductor industries.展开更多
The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimet...The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4 J·g-1. DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel. 1.0 mol·L-1 LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1 LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n=1.83, and the pressure rate constants kp=6.49×10-2 kPa·-0.83·min-1.展开更多
TiO2 nanofilms on surface of fused silica were fabricated by Ti ion implantation and subsequent thermal annealing in oxygen ambience. The silica glasses were implanted by 20 k V Ti ions to 1.5 × 1017ions/cm2 on a...TiO2 nanofilms on surface of fused silica were fabricated by Ti ion implantation and subsequent thermal annealing in oxygen ambience. The silica glasses were implanted by 20 k V Ti ions to 1.5 × 1017ions/cm2 on an implanter of metal vapor vacuum arc(MEVVA) ion source. Effects of annealing parameters on formation,growth and phase transformation of the TiO2 nanofilms were studied in detail. Optical absorption spectroscopy,Raman scattering spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy measurements were done to figure out formation mechanism of the TiO2 nanofilms.The formation of TiO2 nanofilms was due to out-diffusion of the implanted Ti ions to the substrate surface,where they were oxidized into TiO2 nanoparticles. Formation, phase, and thickness of the TiO2 nanofilms can be well tailored by controlling annealing parameters.展开更多
This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irr...This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers by means of holding the bilayers in a negative saturation field. The results show that exchange bias field decreases with the increase of holding time period for both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers. Exchange bias field is also found to be smaller upon irradiation at higher ion dose. This reduction of exchange bias field is attributed to the change of energy barrier induced by ion-radiation.展开更多
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of th...Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about beat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.展开更多
A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to...A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.展开更多
We have synthesized LiMn2–xFexO4 (x = 0, 0.25, and 0.50) cathode materials for applications in Li ion rechargeable batteries via sol-gel method. We studied thermal characteristics of as synthesized materials using di...We have synthesized LiMn2–xFexO4 (x = 0, 0.25, and 0.50) cathode materials for applications in Li ion rechargeable batteries via sol-gel method. We studied thermal characteristics of as synthesized materials using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In order to optimize the synthesis conditions, we studied X-ray diffraction (XRD) of synthesized cathode materials at various temperatures, based on the transitions obtained from DSC/TGA. The XRD results can be co-related to the thermal behavior of the synthesized cathode materials and the synthesis conditions optimized.展开更多
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino...Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.展开更多
Li3V2(PO4)3 cathode material was prepared by a carbon-thermal reduction (CTR) process. V2O5, LiOH-H2O, NH4H2PO4 and C were used as starting materials to synthesize Li3V2(PO4)3 by sintering the mixture at 800℃for 24 h...Li3V2(PO4)3 cathode material was prepared by a carbon-thermal reduction (CTR) process. V2O5, LiOH-H2O, NH4H2PO4 and C were used as starting materials to synthesize Li3V2(PO4)3 by sintering the mixture at 800℃for 24 h. The property of the Li3V2(PO4)3 sample was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. The results show that the Li3V2(PO4)3 sample has the same monoclinic structure as the Li3V2(PO4)3 sample synthesized by hydrogen reduction method. The particle size is about 1.5μm together with homogenous distribution. The initial discharge capacity of Li3V2(PO4)3 powder is 120 mA·h·g-1 at the rate of 0.1C, and the capacity retains 112 mA·h·g-1 after 30 cycles.展开更多
The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates ...The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.展开更多
Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study...Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.展开更多
基金The authors acknowledge the financial support from the National Key Research and Development Program for New Energy Vehicles(No.2016YFB0100200).
文摘Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective approach to protecting LIBs from thermal runaway.In this work,we developed a thermal shutdown separator by coating a thin layer of low-density polyethylene microspheres(PM)onto a commercial porous polypropylene(PP)membrane and investigated the thermal response behaviors of the as-prepared PM/PP separator in LIBs.The structural and thermal analysis results revealed that the coated PM layer had a porous structure,which facilitated the occurrence of normal charge-discharge reactions at ambient temperature,although it could melt completely and fuse together within very short time periods:3 s at 110℃and 1 s at 120℃,to block off the pores of the PP substrate,thereby cutting off the ion transportation between the electrodes and interrupting the battery reaction.Consequently,the PM/PP separator exhibits very similar electrochemical performance to that of a conventional separator at ambient temperature.However,it performs a rapid thermal shutdown at an elevated temperature of^110℃,thus controlling the temperature rise and maintaining the cell in a safe status.Due to its synthetic simplicity and low cost,this separator shows promise for possible application in building safe LIBs.
文摘Ion-acoustic solitary (IAS) waves in electron-positron-ion (e-p-i) plasma have been of interest to many researchers probably due to their relevance in understanding the Universe. However, the study of non-linear ion-acoustic waves in e-p-i plasma with non-thermal electrons has not been adequately studied. A theoretical investigation on non-linear IAS waves in e-p-i plasma comprising of warm inertial adiabatic fluid ions and electrons that are kappa distributed, and Boltzman distributed positron is presented here using the Sagdeev potential technique. It was found that existence domains of finite amplitude IAS waves were confined within the limits of minimum and maximum Mach numbers with varying k values. For lower values of k, the amplitude of the solitary electrostatic potential structures increased as the width decreased, while for high values, the potential amplitude decreased as the width of the solitary structure increased.
基金supported by the National Natural Science Foundation of China (Grant No.60676058)
文摘An experimental study on the photocarrier radiometry signals of As^+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion implantation dose (1×10^11-1×10^16/cm^2), implantation energy (20-140 keV) and subsequent isochronical annealing temperature (500- 1100℃ are investigated. The results show that photocarrier radiometry signals are greatly enhanced for implanted samples annealed at high temperature, especially for those with a high implantation dose. The reduced surface recombination rate resulting from a high built-in electric field generated by annealing-activated impurities in the pn junction is believed to be responsible for the photocarrier radiometry signal enhancement. Photocarrier radiometry is contactless and can therefore be used as an effective in-line tool for the thermal annealing process monitoring of the ion-implanted wafers in semiconductor industries.
基金This study was financially supported by "100 Talents Project" of Chinese Academy of Sciences, Nature Science Funds of Anhui Province (No.050450403) Youth Funds of USTC are also appreciated.
文摘The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4 J·g-1. DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel. 1.0 mol·L-1 LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1 LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6/EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n=1.83, and the pressure rate constants kp=6.49×10-2 kPa·-0.83·min-1.
基金Supported by National Natural Science Foundation of China(No.11405280)Foundation from Education Department of Henan Province(No.14B140021)the Startup Foundation for Doctors of Zhoukou Normal University(No.zksybscx201210)
文摘TiO2 nanofilms on surface of fused silica were fabricated by Ti ion implantation and subsequent thermal annealing in oxygen ambience. The silica glasses were implanted by 20 k V Ti ions to 1.5 × 1017ions/cm2 on an implanter of metal vapor vacuum arc(MEVVA) ion source. Effects of annealing parameters on formation,growth and phase transformation of the TiO2 nanofilms were studied in detail. Optical absorption spectroscopy,Raman scattering spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy measurements were done to figure out formation mechanism of the TiO2 nanofilms.The formation of TiO2 nanofilms was due to out-diffusion of the implanted Ti ions to the substrate surface,where they were oxidized into TiO2 nanoparticles. Formation, phase, and thickness of the TiO2 nanofilms can be well tailored by controlling annealing parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50671048)
文摘This paper reports that the CoFe/IrMn bilayers are deposited by magnetron sputtering on the surfaces of thermallyoxidized Si substrates. It investigates the thermal relaxations of both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers by means of holding the bilayers in a negative saturation field. The results show that exchange bias field decreases with the increase of holding time period for both non-irradiated and Ca^+ ion irradiated CoFe/IrMn bilayers. Exchange bias field is also found to be smaller upon irradiation at higher ion dose. This reduction of exchange bias field is attributed to the change of energy barrier induced by ion-radiation.
基金supported by the U.S.Department of Energy,the Assistant Secretary for Energy Efficiency and Renewable Energy,Office of Vehicle Technologies(Grant No.DE-SC0012704)
文摘Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about beat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.
文摘A Farmer ion chamber with an air cavity volume is the most widely used dosimeter for accurate dose determinations in radiotherapy. The quantity of ionization in the cavity volume occurred a given radiation dose has to be corrected to the cavity air temperature according to a dosimetry protocol because the mass of air in the cavity volume is subject to atmospheric variations. In the present study, we aim to measure the thermal equilibration time in the cavity volume of a Farmer ion chamber for the routine dosimetry. The Farmer ion chamber’s electrode was replaced by a thin thermocouple and coated by the PMMA for a waterproofing so that the measurement of the temperature in the cavity performed in water. As a result of the measurement, A Farmer ion chamber in thermal equilibrium with waterproofing equilibrates rapidly, followed by an exponential fall-off. In water, equilibration to less than 10% of the initial temperature difference required only a few minutes. Thermal equilibrium time is hardly affected by the room temperature change.
文摘We have synthesized LiMn2–xFexO4 (x = 0, 0.25, and 0.50) cathode materials for applications in Li ion rechargeable batteries via sol-gel method. We studied thermal characteristics of as synthesized materials using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In order to optimize the synthesis conditions, we studied X-ray diffraction (XRD) of synthesized cathode materials at various temperatures, based on the transitions obtained from DSC/TGA. The XRD results can be co-related to the thermal behavior of the synthesized cathode materials and the synthesis conditions optimized.
基金supported by the MOST(Grant No.2013CB934000,2014DFG71590,2011CB935902,2010DFA72760,2011CB711202,2013AA050903,2011AA11A257 and 2011AA11A254)China Postdoctoral Science Foundation(Grant No.2013M530599 and 2013M540929)+2 种基金Tsinghua University Initiative Scientific Research Program(Grant No.2010THZ08116,2011THZ08139,2011THZ01004 and 2012THZ08129)the State Key Laboratory of Automotive Safety and Energy(No.ZZ2012-011)Suzhou(Wujiang)Automotive Research Institute,Tsinghua University,Project No.2012WJ-A-01
文摘Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.
基金Project(50302016) supported by the National Natural Science Foundation of China
文摘Li3V2(PO4)3 cathode material was prepared by a carbon-thermal reduction (CTR) process. V2O5, LiOH-H2O, NH4H2PO4 and C were used as starting materials to synthesize Li3V2(PO4)3 by sintering the mixture at 800℃for 24 h. The property of the Li3V2(PO4)3 sample was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement. The results show that the Li3V2(PO4)3 sample has the same monoclinic structure as the Li3V2(PO4)3 sample synthesized by hydrogen reduction method. The particle size is about 1.5μm together with homogenous distribution. The initial discharge capacity of Li3V2(PO4)3 powder is 120 mA·h·g-1 at the rate of 0.1C, and the capacity retains 112 mA·h·g-1 after 30 cycles.
基金Funded by the National Natural Science Foundation of China(No.51402208)the Project by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(No.2016-KF-11)
文摘The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.
文摘Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.