With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volat...With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process.展开更多
Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phas...Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U2013603 and 52225403)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015).
文摘With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process.
文摘Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.