In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 20...The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 2012, which played important roles in guiding and planning the following transmission and transformation projects in environmental protection. In this paper, through the detail analysis on the objective and significance of the planning EIA of transmission and transformation power grid, legal basis and planning EIA practices, some suggestions and thinking about the planning EIA of transmission and transformation power grid were put forward.展开更多
At present,the plan environmental impact assessment of power transmission and transformation grid is relatively mature. How to further improve the quality of plan environmental impact assessment of power grid during t...At present,the plan environmental impact assessment of power transmission and transformation grid is relatively mature. How to further improve the quality of plan environmental impact assessment of power grid during the "14^(th) Five-Year Plan" period is very important. In this paper,the plan environmental impact assessment of power grid in the Development Plan for Power Grid in Nanjing during the "13^(th) Five-Year Plan" Period is studied to further discuss the ideas,evaluation system and content framework of plan environmental impact assessment of power grid.展开更多
From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact ...From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact assessment of ultra-low-emission thermal power projects were discussed from the aspects of evaluation criteria,evaluation grade and scope,pollution control technical lines,environmental benefit accounting,and total emission control,and corresponding recommendations were put forward.展开更多
A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power...A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power industry is 5.2 × 10-1 man /(GW.a), the occupational health risk is 2.5 man /(GW.a), and the total health risk is 3.0 man /(GW.a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6mall/(GW-a), the occupational health risk is 50man /(GW.a), and the total is 54man /(GW.d). Accordingly, the conclusion that China nuclear power industry is an industry with high safety and cleanness is derived at the end.展开更多
Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (w...Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (wastewater treatment plant) on the environment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycle assessment) showed that the impact and damage on the environment by A1-Hilla WWTP was 41 bad points for each 1 m3 of treated wastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were the result of the use of cement, steel and electricity consumption.展开更多
In the first part of this investigation, a Natural Gas Combined Cycle (NGCC) producing 620 MW of electricity was simulated using the commercial software Aspen Hysys V9.0 and the Soave-Redlich-Kwong (SRK) equation of s...In the first part of this investigation, a Natural Gas Combined Cycle (NGCC) producing 620 MW of electricity was simulated using the commercial software Aspen Hysys V9.0 and the Soave-Redlich-Kwong (SRK) equation of state. The aim of this second part is to use exergy-based analyses in order to calculate its exergy efficiency and evaluate its environmental impact under standard conditions. For the exergy efficiency, the performance index under investigation is the exergy destruction ratio (yD). The results of the study show that the combustor is the main contributor to the total exergy destruction of the power plant (yD = 24.35%) and has the lowest exergy efficiency of 75.65%. On the other hand, the Heat Recovery Steam Generator (HRSG) has the lowest contribution to the exergy destruction (yD = 5.63%) of the power plant and the highest exergy efficiency of 94.37%. For the overall power plant, the exergy efficiency is equal to 53.28%. For the environmental impact of the power plant, the relative difference of exergy-related environmental impacts (rb) is utilized as the performance index for each equipment of the plant and the environmental impact of a kWh of electricity (EIE) is used to represent the performance index of the overall power plant. In agreement with the exergy analysis, the results indicate that the combustor and the HRSG have respectively the highest (rb = 32.19%) and the lowest (rb = 5.96%) contribution to the environmental impact. The environmental impact of a kWh of electricity of the power plant is 34.26 mPts/kWh (exergy destruction only), and 34.42 mPts/kWh (both exergy destruction and exergy loss).展开更多
Environmental problems like haze have brought great pressure to current environmental protection management. On the one hand, plan EIA should be promoted further in all industries; on the other hand, the current achie...Environmental problems like haze have brought great pressure to current environmental protection management. On the one hand, plan EIA should be promoted further in all industries; on the other hand, the current achievements and methods of plan EIA should be summarized and innovated. And the EIA supervision and project access can be improved further through the coordination between plan EIA and project EIA. In this study, from the three levels of plan EIA policy framework, five problems of plan EIA in power sector were analyzed according to the current situation of plan EIA in power sector. Based on the present achievements, five macroscopic suggestions were proposed from the view of innovation accord- ing to the new environmental protection situation and requirements at present.展开更多
In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and extern...In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats. The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes, the failure of high speed rotating machineries and accidental drops. The external impact threats may come from airborne missiles, aircraft impact, explosion blast and fragments. The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed. Methods and procedures for the impact assessment of nuclear power plants are introduced. Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.展开更多
Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Amon...Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.展开更多
The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because th...The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.展开更多
With the development of China’s economy,environmental pollution has become cumulatively serious.The primary source of environmental pollution is thermal power generation,which has attracted the attention of governmen...With the development of China’s economy,environmental pollution has become cumulatively serious.The primary source of environmental pollution is thermal power generation,which has attracted the attention of governments and academia in recent years.To effectively reduce environmental pollution,research should study how to constrain the undesirable output of thermal power plants,that is,to limit the total undesirable output of the plants to a certain fixed sum.However,few studies have suggested that these undesirable outputs should be fixed-sum outputs.Moreover,no previous research publication about thermal power plants has analyzed their environmental performance changes.To address these gaps,a novel Malmquist-DEA approach is proposed for evaluate the environmental performance of thermal power plants in this paper.This approach generalizes the equilibrium efficient frontier DEA model with fixed-sum undesirable outputs and incorporates the model into the Malmquist productivity index(MPI).The authors apply this approach to the analysis of provincial thermal power plant environmental performance in China and analyze such plants’trends based on panel data from2011 to 2014.The empirical research shows that the environmental performance of regional thermal power plants was positively affected by efficiency change and negatively affected by technical change.Finally,the authors provide policy suggestions based on our findings.展开更多
When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to...When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to rapid population growth and urbanization, understanding and quantification of the interdependency between water and energy, along with analyzing nexus interactions, trade-offs and risks are a pre-requisite for effective and integrated planning and management of these two key sectors. This paper performs an assessment of the water-energy nexus in the municipal sector of the Eastern Province of Saudi Arabia, where the electric energy footprint in the water value chain (groundwater, desalination and wastewater treatment) and the water footprint in electric energy generation (thermal power plants) are quantified using data for the year 2013. The results confirmed the high and strong dependency on energy for the municipal water cycle in the Eastern Province and revealed that energy generation dependency on freshwater resources is also major and evident, especially at farther distances from the coastal areas. Thermal desalination is by far the most energy intensive stage among the entire Eastern Province water cycle. In 2013, it was estimated 13% of the Eastern Province energy generation capacity goes for desalination, that’s a 5% of the Kingdom capacity. Substantial energy input for desalination in the Eastern Province is attributed to the production and conveyance of water to the Capital Riyadh (48.9 kWh/m3 and 4.2 kWh/m3 respectively). As for groundwater pumping, it was estimated that 206.2 GWH was used for pumping 268 MCM in 2013 (0.764 kWh/m3). Energy requirement for primary, secondary and tertiary wastewater treatment was found to be the least (2 - 108 GWH) and was equivalent to an average of 0.4 kWh/m3. The water footprint in electricity generation was estimated to be about 739,308 m3 in 2013 (0.125 m3/kWh), a relatively higher value compared to the norm of gas combustion turbine cooling water requirement around the world, and is especially significant for water scarce Kingdom. Anthropogenic Greenhouse Gases (GHG) emission was computed to be around 17 Million Ton of carbon dioxide equivalent (CO2e) for the entire water supply chain, with desalination having the highest carbon footprint in the whole water cycle (16.9 MT of CO2e). Carbon emissions from electric energy generation through power plants had significantly exceeded the entire water supply chain’s carbon footprint. Alternative mitigation options of management and technology fixes are suggested to reduce energy consumption in the water cycle, minimize the water footprint in electric generation, and mitigate associated GHG emission.展开更多
In this paper a new methodological approach, life cycle cost assessment (LCCA), is applied to evaluate the investment concerning a wind offshore plant location in Sicily East Coast. In particular, we analyze economi...In this paper a new methodological approach, life cycle cost assessment (LCCA), is applied to evaluate the investment concerning a wind offshore plant location in Sicily East Coast. In particular, we analyze economic quantification of the damage deriving from the construction of the system, divided into environmental impacts deriving from the construction of a single turbine, and environmental impacts as a consequence of the construction of the foundations. The preliminary economic information for the LCCA analysis of the examined wind park offshore regards the management of the monetary capital initially invested, choice of the interest rate and of other necessary financial features, used to compute the net present value of the cash-flows accrued during the project lifetime. In this way, a more precise implementation of the LCCA in whatever type of structural investment is made possible, allowing the examination of all information useful for supporting the decision process.展开更多
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
基金Supported by the National Key Technology R&D Program(2012BAC20B1003)the Key National Social Science Fund Project(12&ZD214)the Special Fund Project for the Scientific Research of the Environmental Protection Welfare Industry(201209001)
文摘The planning environmental impact assessment (EIA) of transmission and transformation power grid at levels of 500 and 220 kV had been finished completely in the 13 municipalities of Jiangsu Province by the end of 2012, which played important roles in guiding and planning the following transmission and transformation projects in environmental protection. In this paper, through the detail analysis on the objective and significance of the planning EIA of transmission and transformation power grid, legal basis and planning EIA practices, some suggestions and thinking about the planning EIA of transmission and transformation power grid were put forward.
文摘At present,the plan environmental impact assessment of power transmission and transformation grid is relatively mature. How to further improve the quality of plan environmental impact assessment of power grid during the "14^(th) Five-Year Plan" period is very important. In this paper,the plan environmental impact assessment of power grid in the Development Plan for Power Grid in Nanjing during the "13^(th) Five-Year Plan" Period is studied to further discuss the ideas,evaluation system and content framework of plan environmental impact assessment of power grid.
基金Supported by Special Project for Research on Prevention and Control of Air Pollution from Fire Coal in 2018 of Ministry of Ecology and Environment of the People’s Republic of China(2018A030)
文摘From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact assessment of ultra-low-emission thermal power projects were discussed from the aspects of evaluation criteria,evaluation grade and scope,pollution control technical lines,environmental benefit accounting,and total emission control,and corresponding recommendations were put forward.
文摘A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power industry is 5.2 × 10-1 man /(GW.a), the occupational health risk is 2.5 man /(GW.a), and the total health risk is 3.0 man /(GW.a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6mall/(GW-a), the occupational health risk is 50man /(GW.a), and the total is 54man /(GW.d). Accordingly, the conclusion that China nuclear power industry is an industry with high safety and cleanness is derived at the end.
文摘Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (wastewater treatment plant) on the environment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycle assessment) showed that the impact and damage on the environment by A1-Hilla WWTP was 41 bad points for each 1 m3 of treated wastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were the result of the use of cement, steel and electricity consumption.
文摘In the first part of this investigation, a Natural Gas Combined Cycle (NGCC) producing 620 MW of electricity was simulated using the commercial software Aspen Hysys V9.0 and the Soave-Redlich-Kwong (SRK) equation of state. The aim of this second part is to use exergy-based analyses in order to calculate its exergy efficiency and evaluate its environmental impact under standard conditions. For the exergy efficiency, the performance index under investigation is the exergy destruction ratio (yD). The results of the study show that the combustor is the main contributor to the total exergy destruction of the power plant (yD = 24.35%) and has the lowest exergy efficiency of 75.65%. On the other hand, the Heat Recovery Steam Generator (HRSG) has the lowest contribution to the exergy destruction (yD = 5.63%) of the power plant and the highest exergy efficiency of 94.37%. For the overall power plant, the exergy efficiency is equal to 53.28%. For the environmental impact of the power plant, the relative difference of exergy-related environmental impacts (rb) is utilized as the performance index for each equipment of the plant and the environmental impact of a kWh of electricity (EIE) is used to represent the performance index of the overall power plant. In agreement with the exergy analysis, the results indicate that the combustor and the HRSG have respectively the highest (rb = 32.19%) and the lowest (rb = 5.96%) contribution to the environmental impact. The environmental impact of a kWh of electricity of the power plant is 34.26 mPts/kWh (exergy destruction only), and 34.42 mPts/kWh (both exergy destruction and exergy loss).
基金Supported by the Scientific Research Project of Environmental Protection Public Welfare Industry (201509021)
文摘Environmental problems like haze have brought great pressure to current environmental protection management. On the one hand, plan EIA should be promoted further in all industries; on the other hand, the current achievements and methods of plan EIA should be summarized and innovated. And the EIA supervision and project access can be improved further through the coordination between plan EIA and project EIA. In this study, from the three levels of plan EIA policy framework, five problems of plan EIA in power sector were analyzed according to the current situation of plan EIA in power sector. Based on the present achievements, five macroscopic suggestions were proposed from the view of innovation accord- ing to the new environmental protection situation and requirements at present.
文摘In order to ensure the highest safety requirements, nuclear power plant structures (the containment structures, the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats. The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes, the failure of high speed rotating machineries and accidental drops. The external impact threats may come from airborne missiles, aircraft impact, explosion blast and fragments. The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed. Methods and procedures for the impact assessment of nuclear power plants are introduced. Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.
文摘Nowadays for power generation, environment is a major consideration. The heart of power generation is power station. At present there are almost above 40(Both Government & Rental) power station in Bangladesh. Among these 80% of power station is gas based. Rest of the 20% is coal, liquid and furnace oil based. Bangladesh has only one Hydraulic power station. These gas and coal based power stations are giving adverse effect in Bangladesh. The main emissions from coal combustion at thermal power plants are carbon dioxide (CO), nitrogen oxides (NO), sulfur oxides (SO), chlorofluorocarbons (CFCs), and air- borne inorganic particles such as fly ash, soot, and other trace gas species. Carbon dioxide, methane, and chlorofluorocarbons are greenhouse gases. These emissions are considered to be responsible for heating up the atmosphere, producing a harmful global environment. It is known to all that hydro power station is a clean source of energy, but it has also some ecological and environmental effect. Dhaka is one of the top polluted city in the world. So for power generation if the environmental effect is not considered then Bangladesh will be in great trouble. The purpose of this paper is to discuss the present and future possible environmental effect of power generation in Bangladesh.
文摘The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.
基金supported by the National Natural Science Foundation of China under Grant Nos.72071192,71671172the Anhui Provincial Quality Engineering Teaching and Research Project under Grant No.2020jyxm2279+2 种基金the Anhui University and Enterprise Cooperation Practice Education Base Project under Grant No.2019sjjd02Teaching and Research Project of USTC(2019xjyxm019,2020ycjg08)the Fundamental Research Funds for the Central Universities(WK2040000027)。
文摘With the development of China’s economy,environmental pollution has become cumulatively serious.The primary source of environmental pollution is thermal power generation,which has attracted the attention of governments and academia in recent years.To effectively reduce environmental pollution,research should study how to constrain the undesirable output of thermal power plants,that is,to limit the total undesirable output of the plants to a certain fixed sum.However,few studies have suggested that these undesirable outputs should be fixed-sum outputs.Moreover,no previous research publication about thermal power plants has analyzed their environmental performance changes.To address these gaps,a novel Malmquist-DEA approach is proposed for evaluate the environmental performance of thermal power plants in this paper.This approach generalizes the equilibrium efficient frontier DEA model with fixed-sum undesirable outputs and incorporates the model into the Malmquist productivity index(MPI).The authors apply this approach to the analysis of provincial thermal power plant environmental performance in China and analyze such plants’trends based on panel data from2011 to 2014.The empirical research shows that the environmental performance of regional thermal power plants was positively affected by efficiency change and negatively affected by technical change.Finally,the authors provide policy suggestions based on our findings.
文摘When it comes to water and energy, it is hard to obtain one without the other. Water is required to produce energy and energy is necessary in water production and management. As demands for water are escalating due to rapid population growth and urbanization, understanding and quantification of the interdependency between water and energy, along with analyzing nexus interactions, trade-offs and risks are a pre-requisite for effective and integrated planning and management of these two key sectors. This paper performs an assessment of the water-energy nexus in the municipal sector of the Eastern Province of Saudi Arabia, where the electric energy footprint in the water value chain (groundwater, desalination and wastewater treatment) and the water footprint in electric energy generation (thermal power plants) are quantified using data for the year 2013. The results confirmed the high and strong dependency on energy for the municipal water cycle in the Eastern Province and revealed that energy generation dependency on freshwater resources is also major and evident, especially at farther distances from the coastal areas. Thermal desalination is by far the most energy intensive stage among the entire Eastern Province water cycle. In 2013, it was estimated 13% of the Eastern Province energy generation capacity goes for desalination, that’s a 5% of the Kingdom capacity. Substantial energy input for desalination in the Eastern Province is attributed to the production and conveyance of water to the Capital Riyadh (48.9 kWh/m3 and 4.2 kWh/m3 respectively). As for groundwater pumping, it was estimated that 206.2 GWH was used for pumping 268 MCM in 2013 (0.764 kWh/m3). Energy requirement for primary, secondary and tertiary wastewater treatment was found to be the least (2 - 108 GWH) and was equivalent to an average of 0.4 kWh/m3. The water footprint in electricity generation was estimated to be about 739,308 m3 in 2013 (0.125 m3/kWh), a relatively higher value compared to the norm of gas combustion turbine cooling water requirement around the world, and is especially significant for water scarce Kingdom. Anthropogenic Greenhouse Gases (GHG) emission was computed to be around 17 Million Ton of carbon dioxide equivalent (CO2e) for the entire water supply chain, with desalination having the highest carbon footprint in the whole water cycle (16.9 MT of CO2e). Carbon emissions from electric energy generation through power plants had significantly exceeded the entire water supply chain’s carbon footprint. Alternative mitigation options of management and technology fixes are suggested to reduce energy consumption in the water cycle, minimize the water footprint in electric generation, and mitigate associated GHG emission.
文摘In this paper a new methodological approach, life cycle cost assessment (LCCA), is applied to evaluate the investment concerning a wind offshore plant location in Sicily East Coast. In particular, we analyze economic quantification of the damage deriving from the construction of the system, divided into environmental impacts deriving from the construction of a single turbine, and environmental impacts as a consequence of the construction of the foundations. The preliminary economic information for the LCCA analysis of the examined wind park offshore regards the management of the monetary capital initially invested, choice of the interest rate and of other necessary financial features, used to compute the net present value of the cash-flows accrued during the project lifetime. In this way, a more precise implementation of the LCCA in whatever type of structural investment is made possible, allowing the examination of all information useful for supporting the decision process.