In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex ...In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex function method was used as a basis for the theoretical model of the space crack prevention in metal dies using electromagnetic heating. The crack arrest was accomplished by a pulse current discharge through the inner and outer. The theoretical analysis results show that the temperature around the crack tip rises instantly above the melting point of the metal. Small welded joints are formed at a small sphere near the crack tip inside the metal die by metal melting as a result of the heat concentration effect when the current pulse discharged. The thermal compressive stress field appears around the crack tip at the moment. The research results show that the crack prevention using electromagnetic heating can decrease the stress concentration and forms a compressive stress area around the crack tip, and also prevents the main crack from propagating further, and the goal of crack preventing can be reached.展开更多
The physical model of temperature field and thermal stress field are established in this paper, on which the numerical simulation with the assuming physical and laser milling parameters have been finished. The laser m...The physical model of temperature field and thermal stress field are established in this paper, on which the numerical simulation with the assuming physical and laser milling parameters have been finished. The laser milling process can be explained.展开更多
To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o...To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.展开更多
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll...Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.展开更多
In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was teste...In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
A system for the numerical simulation of 3D temperature and stress fields during casting process was studied, developed and practiced based on finite difference method (FDM) in this paper. An approach where the stress...A system for the numerical simulation of 3D temperature and stress fields during casting process was studied, developed and practiced based on finite difference method (FDM) in this paper. An approach where the stress/strain and the heat transfer analysis use the same computational domain was presented, which avoided transferring temperature data between FDM and FEM nodes and elements. A slot-board steel casting was simulated and the calculated results are in agreements with those obtained from practical producing.展开更多
With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decrea...With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decreases the difficulty in modeling complicated models in ANSYS. In view of the function of the birth-death element and secondary development with APDL (ANSYS parametric design language), a simulation analysis of the temperature field and thermal stress during the construction period of the intake tower was conveniently conducted. The results show that the temperature rise is about 29.934 ℃ over 3 or 4 days. The temperature differences between any two points are less than 24 ℃. The thermal stress increases with the temperature difference and reaches its maximum of 1.68 MPa at the interface between two concrete layers.展开更多
The heat flow in crust and the thermal stress generated by the flow play a very important role in earthquake occurrence. Different crustal structure has different effect on heat distribution and associated thermal str...The heat flow in crust and the thermal stress generated by the flow play a very important role in earthquake occurrence. Different crustal structure has different effect on heat distribution and associated thermal stress. In all of typical seismogenic crustal structure models, including the bulge of Moho surface, the deep-large fault in the mid-lower crust, low-velocity and high-conductive layer in the middle crust, and the typical crustal structure in mid-upper crust, the thermal stress produced by deep heat disturbance may move up to the mid-upper crest. This leads to upper brittle part of crust break and hence, strong earthquakes. This result is constructive in enhancing our understanding of the role of deep fieat flow in curst in development of earthquake and its generation, as well as the generation mechanism of the shallow flowing fluid.展开更多
In this paper, a new method for getting the temperature and thestress fields is proposed. By this method, three pieces of information can berecorded in two holograms at the same time , when a two-dimensional photoe-la...In this paper, a new method for getting the temperature and thestress fields is proposed. By this method, three pieces of information can berecorded in two holograms at the same time , when a two-dimensional photoe-lastic model is subjected to thermal loa展开更多
A mixed method which combines the recent developed finite analytical method and the boundary fitting coordinate transformation method was used first to calculate the temperature field and thermal stress field of the c...A mixed method which combines the recent developed finite analytical method and the boundary fitting coordinate transformation method was used first to calculate the temperature field and thermal stress field of the cold roller in this paper. The following results are obtained by the calculation: thermal stresses σr=0, σθ=σz are maximum tension stress on the inner surface of the cold roller and σr=0, |σθ|=|σz| are maximum compression stress on the outer surface of the cold roller in the steady and unsteady case. Effectiveness and validity of the mixed method are checked with steady coil roller problems having theoretical solutions. The results show that good agreement is achived between the calculated value and theoretical solution,and the mixed method used in the paper is very workable. The mixed method is also useful in solving the steady and unsteady thermal stress field proplems of the hot -rolled for the reversing rolling mill and the continous rolling mill.展开更多
In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten wil...In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.展开更多
Several effective numerical techniques,based on a finite element analysis,have been developed and computed independently.Results are presented describing the impacting process,and the subsequent temperature and residu...Several effective numerical techniques,based on a finite element analysis,have been developed and computed independently.Results are presented describing the impacting process,and the subsequent temperature and residual stress fields of a molten nickel particle impacting onto a flat substrate.Problems of this type,especially the prediction of the thermal residual stresses,are of major practical interest in thermal spray operations as a pioneering approach.展开更多
The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on...The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on the nonlocal elasticity theory.The Lorentz forces are obtained in terms of the local elastic rotations of the beam and the thermal stress due to current is modeled as an axial compressive force.Using the Galerkin method,the governing equations of motion are solved and the stability boundary of the nanobeam is determined.展开更多
基金Project supported by the National Natural Science Foundation of China (No.50275128)the Natural Science Foundation of Hebei Province of China (No.599255)
文摘In order to solve the thermal stress field around crack tip in metal die when crack prevention using electromagnetic heating, a metal die with a half-embedded round crack was selected as the study object. The complex function method was used as a basis for the theoretical model of the space crack prevention in metal dies using electromagnetic heating. The crack arrest was accomplished by a pulse current discharge through the inner and outer. The theoretical analysis results show that the temperature around the crack tip rises instantly above the melting point of the metal. Small welded joints are formed at a small sphere near the crack tip inside the metal die by metal melting as a result of the heat concentration effect when the current pulse discharged. The thermal compressive stress field appears around the crack tip at the moment. The research results show that the crack prevention using electromagnetic heating can decrease the stress concentration and forms a compressive stress area around the crack tip, and also prevents the main crack from propagating further, and the goal of crack preventing can be reached.
文摘The physical model of temperature field and thermal stress field are established in this paper, on which the numerical simulation with the assuming physical and laser milling parameters have been finished. The laser milling process can be explained.
文摘To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS.
基金Item Sponsored by National Natural Science Foundation of China (50534020)
文摘Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.
文摘In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
文摘A system for the numerical simulation of 3D temperature and stress fields during casting process was studied, developed and practiced based on finite difference method (FDM) in this paper. An approach where the stress/strain and the heat transfer analysis use the same computational domain was presented, which avoided transferring temperature data between FDM and FEM nodes and elements. A slot-board steel casting was simulated and the calculated results are in agreements with those obtained from practical producing.
基金supported by the Natural Science Foundation of Henan Province (Grant No. 511050100)
文摘With a focus on the intake tower of the Yanshan Reservoir, this paper discusses the method of modeling in the 3D CAD software SolidWorks and the interface processing between SolidWorks and the ANSYS code, which decreases the difficulty in modeling complicated models in ANSYS. In view of the function of the birth-death element and secondary development with APDL (ANSYS parametric design language), a simulation analysis of the temperature field and thermal stress during the construction period of the intake tower was conveniently conducted. The results show that the temperature rise is about 29.934 ℃ over 3 or 4 days. The temperature differences between any two points are less than 24 ℃. The thermal stress increases with the temperature difference and reaches its maximum of 1.68 MPa at the interface between two concrete layers.
基金National Eleventh Five-year Science and Technology Development Foundation (2006BAC01B02-03-01).
文摘The heat flow in crust and the thermal stress generated by the flow play a very important role in earthquake occurrence. Different crustal structure has different effect on heat distribution and associated thermal stress. In all of typical seismogenic crustal structure models, including the bulge of Moho surface, the deep-large fault in the mid-lower crust, low-velocity and high-conductive layer in the middle crust, and the typical crustal structure in mid-upper crust, the thermal stress produced by deep heat disturbance may move up to the mid-upper crest. This leads to upper brittle part of crust break and hence, strong earthquakes. This result is constructive in enhancing our understanding of the role of deep fieat flow in curst in development of earthquake and its generation, as well as the generation mechanism of the shallow flowing fluid.
文摘In this paper, a new method for getting the temperature and thestress fields is proposed. By this method, three pieces of information can berecorded in two holograms at the same time , when a two-dimensional photoe-lastic model is subjected to thermal loa
文摘A mixed method which combines the recent developed finite analytical method and the boundary fitting coordinate transformation method was used first to calculate the temperature field and thermal stress field of the cold roller in this paper. The following results are obtained by the calculation: thermal stresses σr=0, σθ=σz are maximum tension stress on the inner surface of the cold roller and σr=0, |σθ|=|σz| are maximum compression stress on the outer surface of the cold roller in the steady and unsteady case. Effectiveness and validity of the mixed method are checked with steady coil roller problems having theoretical solutions. The results show that good agreement is achived between the calculated value and theoretical solution,and the mixed method used in the paper is very workable. The mixed method is also useful in solving the steady and unsteady thermal stress field proplems of the hot -rolled for the reversing rolling mill and the continous rolling mill.
文摘In the initial phase of the physics experiment, the double-null divertor plates used consist of graphite armor tiles, Mo-alloy intermediate layers and Cu-alloy coolant tubes. In the later operating phase, tungsten will be used as armor tiles. A multi-physical field numerical analysis method is used in this paper. Its analysis model reflects more realistically the real divertor structure than other models. Two-dimensional (2D) and three-dimensional (3D) fluid flow field, temperature distribution and thermal stress analyses of the divertor plates are carried out by the ANSYS code. During the physics experimental phase with a heat flux of 1 MW/m2, a coolant velocity of 5.48 m/s, and a thermal stress of 750 kg/cm2, the graphite armor tiles successfully meet the requirements of temperature, thermal stress and sputtering erosion. The tungsten armor will be considered as a second candidate. The result of simulation can be used for upgrading the design parameters of the HL-2A poloidal divertor.
文摘Several effective numerical techniques,based on a finite element analysis,have been developed and computed independently.Results are presented describing the impacting process,and the subsequent temperature and residual stress fields of a molten nickel particle impacting onto a flat substrate.Problems of this type,especially the prediction of the thermal residual stresses,are of major practical interest in thermal spray operations as a pioneering approach.
文摘The resonance frequencies and stability of a nanobeam in a longitudinal magnetic field are investigated.To this aim,a three dimensional beam model is used in which the small-scale effect is taken into account based on the nonlocal elasticity theory.The Lorentz forces are obtained in terms of the local elastic rotations of the beam and the thermal stress due to current is modeled as an axial compressive force.Using the Galerkin method,the governing equations of motion are solved and the stability boundary of the nanobeam is determined.