期刊文献+
共找到619,335篇文章
< 1 2 250 >
每页显示 20 50 100
COUPLED THERMAL/MECHANICAL ANALYSIS FOR THE FRACTURE OF FUNCTIONALLY GRADED MATERIALS UNDER TRANSIENT THERMAL LOADING 被引量:1
1
作者 Zhang Xinghong Wang Baolin Han Jiecai 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期95-101,共7页
A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously... A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously along the crack faces. By using alaminated composite plate model to simulate the ma- Terialnon-homogeneity, an algorithm for solving the system based on Laplacetransform and Fourier transform Techniques is presented. Unlikeearlier studies that considered certain assumed propertydistributions and a Single crack problem, the current investigationstudies multiple crack problem in the FGMs with arbitrarily Varyingmaterial properties. Transient thermal stresses are presented. 展开更多
关键词 functionally graded materials fracture mechanics transient thermal stress Laplace trans- form
下载PDF
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 被引量:1
2
作者 Meng Lian Wei Ding +5 位作者 Song Liu Yufeng Wang Tianyi Zhu Yue-EMiao Chao Zhang Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期231-243,共13页
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fab... The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging.Herein,a delaminated aerogel film(DAF)is fabricated through filtration-induced delaminated gelation and ambient drying.The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber(FCNF)at the solid-liquid interface between the filter and the filtrate during filtration,resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding.By exchanging the solvents from water to hexane,the hydrogen bonding in the FCNF hydrogel is further enhanced,enabling the formation of the DAF with intra-layer mesopores upon ambient drying.The resulting aerogel film is lightweight and ultra-flexible,which pos-sesses desirable properties of high visible-light transmittance(91.0%),low thermal conductivity(33 mW m^(-1) K^(-1)),and high atmospheric-window emissivity(90.1%).Furthermore,the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups,enhancing its durability and UV resistance.Consequently,the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting,thermal insulation,and daytime radiative cooling under direct sunlight.Significantly,the enclosed space protected by the DAF exhibits a temperature reduction of 2.6℃ compared to that shielded by conventional architectural glass. 展开更多
关键词 Transparent aerogel Cellulose nanofiber aerogel Delaminated gelation thermal insulation Passive daytime radiative cooling
下载PDF
Mechanical Properties and Thermal Shock Resistance of SrAl_(2)Si_(2)O_(8) Reinforced BN Ceramic Composites
3
作者 WANG Bo CAI Delong +7 位作者 ZHU Qishuai LI Daxin YANG Zhihua DUAN Xiaoming LI Yanan WANG Xuan JIA Dechang ZHOU Yu 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1182-1188,共7页
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ... Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually. 展开更多
关键词 BN MATRIX composite hot-press SINTERING mechanical PROPERTY thermal shock resistance service reliability
下载PDF
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
4
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
下载PDF
Synergistically Improved Mechanical Properties and Thermal Conductivity of Hypoeutectic AlSiNiFeMg Alloy Prepared by Ultrasonic-assisted Casting
5
作者 ZHANG Wenda YUAN Xuan +4 位作者 ZHOU Yuli ZHONG Gu BAI Peikang WANG Hongfu LIU Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1565-1568,共4页
We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and... We employed a melt ultrasonic treatment near the liquidus to prepare a high-thermal-conductivity Al-4Si-2Ni-0.8Fe-0.4Mg alloy.The influences of various ultrasonic powers on its microstructure,mechanical properties,and thermal conductivity were investigated.It is shown that near-liquidus ultrasonication significantly refines the alloy grains and eutectic structure,synergistically improving the alloy’s mechanical properties and thermal conductivity.Specifically,the grain size decreased by 84.5%from 941.4 to 186.2μm.Increasing the ultrasonic power improved the thermal conductivity of the alloy slightly and significantly enhanced its mechanical properties.At an ultrasonic power of 2100 W,the tensile strength,yield strength,elongation rate,and thermal conductivity were 216 MPa,142 MPa,6.3%,and 169 W/(m·k),respectively. 展开更多
关键词 Al-Si alloy mechanical property thermal conductivity ultrasonic treatment SOLIDIFICATION microstructure
下载PDF
Simultaneously enhanced thermal conductivity and mechanical performance of carbon nanotube reinforced ZK61 matrix composite
6
作者 Fanjing Meng Wenbo Du +3 位作者 Xian Du Baohong Zhu Ke Liu Shubo Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2756-2765,共10页
Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductiv... Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys. 展开更多
关键词 Mg matrix composite Carbon nanotube INTERFACE thermal conductivity mechanical performance
下载PDF
A creep model for ultra-deep salt rock considering thermal-mechanical damage under triaxial stress conditions
7
作者 Chao Liang Jianfeng Liu +3 位作者 Jianxiong Yang Huining Xu Zhaowei Chen Lina Ran 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期588-596,共9页
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin... To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems. 展开更多
关键词 Creep experiments Creep model thermal and mechanical damage Fractional derivative
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing
8
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Effects of Diamond on the Mechanical Properties and Thermal Conductivity of Si_(3)N_(4)Composites Fabricated Using Spark Plasma Sintering
9
作者 GAO Ying LIU Di +6 位作者 WANG Aiyang ZHANG Song HE Qianglong REN Shifeng FANG Jie WANG Zihan WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1319-1324,共6页
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di... Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials. 展开更多
关键词 spark plasma sintering Si_(3)N_(4) DIAMOND thermal conductivity mechanical properties
下载PDF
Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials
10
作者 Youssef Maaloufa Soumia Mounir +8 位作者 Sara Ibnelhaj Fatima Zohra El Wardi Asma Souidi Yakubu Aminu Dodo Malika Atigui Mina Amazal Abelhamid Khabbazi Hassan Demrati Ahmed Aharoune 《Journal of Renewable Materials》 EI CAS 2024年第4期843-867,共25页
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ... The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls. 展开更多
关键词 Biosourced materials fiber banana flexural strength mechanical properties open-air drying PLASTER thermal properties waste management
下载PDF
Micro-macro evolution of mechanical behaviors of thermally damaged rock:A state-of-the-art review
11
作者 Yunmin Wang Jun Peng +2 位作者 Linfei Wang Chuanhua Xu Bibo Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2833-2853,共21页
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan... The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed. 展开更多
关键词 thermal damage Macroscopic characteristics Microstructure evolution Temperature magnitude Cooling method thermal cycle
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
12
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE COMPOSITES hexagonal boron nitride
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
13
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building Insulation mechanical and thermal Properties
下载PDF
Thermal fatigue and wear of compacted graphite iron brake discs with various thermomechanical properties
14
作者 Gui-quan Wang Zhuo Xu +2 位作者 Zhong-li Liu Xiang Chen Yan-xiang Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期248-256,共9页
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat... The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear. 展开更多
关键词 compacted graphite iron brake disc thermomechanical properties thermal fatigue WEAR
下载PDF
Simultaneously improving thermal conductivity,mechanical properties and metal fluidity through Cu alloying in Mg-Zn-based alloys
15
作者 Yuntao Zhang Wei Liu +3 位作者 Weipeng Chen Zhiqiang Li Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3823-3839,共17页
Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal con... Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal conductivity.Here,we investigate microstructure,mechanical performance,thermal conductivity and metal fluidity of Mg-5Zn(wt.%)alloy after Cu alloying by experimental and simulation methods.First,Mg-5Zn alloy consist ofα-Mg matrix and interdendritic MgZn phases.As the Cu content increases,however,MgZn phases disappear but intragranular Mg_(2)Cu and interdendritic MgZnCu phases appear in Mg-5Zn-Cu alloys.Besides,the grain size ofα-Mg phase is refined and the volume fraction of MgZnCu phase increases as the Cu content increases.Second,Cu addition is found to improve thermal conductivity of Mg-5Zn alloy remarkably.Especially,Mg-5Zn-4Cu alloy exhibits the best thermal conductivity of 124 W/(m·K),which is mainly due to the significant reduction in both solid solubility of Zn in theα-Mg matrix and lattice distortion ofα-Mg matrix.Moreover,a stable crystal structure of MgZnCu phase also contributes to an increased thermal conductivity based on first principles and molecular dynamics simulations.Third,Cu addition simultaneously enhances strength and ductility of Mg-5Zn alloy.Tensile yield strength and elongation of Mg-5Zn-6Cu alloy reach 117 MPa and 18.0%,respectively,which is a combined result of refinement,solution,second phase,and dislocation strengthening.Finally,combined with a phase field simulation,we found that Cu addition enhances metal fluidity of Mg-5Zn alloy.On the one hand,Cu alloying not only delays dendrite growth but also prolongs solidification time.On the other hand,MgZnCu phase stabilizes the dendrite growth of theα-Mg phases by reducing energy consumption during solidification of liquid metal.This work demonstrates that Cu alloying is an ideal strategy for synergistically improving the thermal conductivity,mechanical performance and metal fluidity of Mg-based alloys. 展开更多
关键词 Mg-Zn-Cu alloy Phase field Molecular dynamics thermal conductivity Metal fluidity
下载PDF
Microstructure, Mechanical Properties and Corrosion Resistance of the Mo_(0.5)V_(0.5)NbTiZr_(x) High-Entropy Alloys with Low Thermal Neutron Sections
16
作者 Chao Xiang En-Hou Han +4 位作者 Zhiming Zhang Huameng Fu Haifeng Zhang Jianqiu Wang Guodong Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第10期1643-1656,共14页
High-entropy alloys exhibit significant potential for application in the nuclear industry owing to their exceptional resistance to irradiation,excellent mechanical properties,and corrosion resistance.In this work,the ... High-entropy alloys exhibit significant potential for application in the nuclear industry owing to their exceptional resistance to irradiation,excellent mechanical properties,and corrosion resistance.In this work,the Mo_(0.5)V_(0.5)NbTiZr_(x)(x=0-2.0)high-entropy alloys containing alloying elements with low thermal neutron absorption cross section were designed and prepared.The crystal structure,microstructure,mechanical properties and corrosion resistance of the studied alloys were investigated.All the alloys possess a body-centered cubic crystal structure,which is consistent with the CALPHAD(acronym of CALculation of PHAse Diagram)modeling results.The addition of Zr does not alter the crystal structure of the Mo_(0.5)V_(0.5)NbTiZr_(x) alloys;however,it leads to an increase in the lattice constant as Zr content increases.The addition of Zr initially enhances the yield strength,but subsequently leads to a decline as the Zr content increases further.Specifically,the corrosion resistance of the Mo_(0.5)V_(0.5)NbTiZr_(x) alloys in superheated steam at 400℃ and 10.3 MPa decreases with the increase of Zr content.The effect of Zr content on the phase formation,mechanical properties and corrosion resistance of the Mo_(0.5)V_(0.5)NbTiZr_(x) high-entropy alloys are discussed.This study has successfully developed a novel Mo_(0.5)V_(0.5)NbTiZr_(0.25) high-entropy alloy,which demonstrates exceptional properties including high yield strength,excellent ductility,and superior anti-corrosion performance.The findings of this research have significant implications for the design of high-entropy alloys in nuclear applications. 展开更多
关键词 High-entropy alloys Phase formation mechanical properties Corrosion resistance
原文传递
Coaxial Wet Spinning of Boron Nitride Nanosheet‑Based Composite Fibers with Enhanced Thermal Conductivity and Mechanical Strength
17
作者 Wenjiang Lu Qixuan Deng +3 位作者 Minsu Liu Baofu Ding Zhiyuan Xiong Ling Qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期126-138,共13页
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni... Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs. 展开更多
关键词 Boron nitride nanosheets Coaxial fiber Interfacial compression Nanosheet aligning Wearable thermal management
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
18
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
下载PDF
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
19
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness GRANITE strain rate thermal treatment
下载PDF
Geothermo-mechanical alterations due to heat energy extraction in enhanced geothermal systems: Overview and prospective directions
20
作者 Mary C.Ngoma Oladoyin Kolawole Olufemi Olorode 《Deep Underground Science and Engineering》 2024年第3期256-268,共13页
Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and m... Geothermal energy from deep underground (or geological) formations,with or without its combination with carbon capture and storage (CCS),can be a key technology to mitigate anthropogenic greenhouse gas emissions and meet the 2050 net‐zero carbon emission target.Geothermal resources in low‐permeability and medium‐and high‐temperature reservoirs in sedimentary sequence require hydraulic stimulation for enhanced geothermal systems (EGS).However,fluid migration for geothermal energy in EGS or with potential CO_(2) storage in a CO_(2)‐EGS are both dependent on the in situ flow pathway network created by induced fluid injection.These thermo‐mechanical interactions can be complex and induce varying alterations in the mechanical response when the working fluid is water (in EGS) or supercritical CO_(2)(in CO_(2)‐EGS),which could impact the geothermal energy recovery from geological formations.Therefore,there is a need for a deeper understanding of the heat extraction process in EGS and CO_(2)‐EGS.This study presents a systematic review of the effects of changes in mechanical properties and behavior of deep underground rocks on the induced flow pathway and heat recovery in EGS reservoirs with or without CO_(2) storage in CO_(2) ‐EGS.Further,we proposed waterless‐stimulated EGS as an alternative approach to improve heat energy extraction in EGS.Lastly,based on the results of our literature review and proposed ideas,we recommend promising areas of investigation that may provide more insights into understanding geothermo‐mechanics to further stimulate new research studies and accelerate the development of geothermal energy as a viable clean energy technology. 展开更多
关键词 CO_(2)-EGS enhanced geothermal systems GEOmechanICS geothermal energy underground thermal energy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部