期刊文献+
共找到8,570篇文章
< 1 2 250 >
每页显示 20 50 100
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
1
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete
2
作者 Zhiyong Yang Enjie Hu +3 位作者 Lei Xi Zhi Chen Feng Xiong Chuanhai Zhan 《Fluid Dynamics & Materials Processing》 EI 2024年第4期705-723,共19页
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min... An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass. 展开更多
关键词 Carbon fiber silicon carbide thermally conductive asphalt concrete road performance electrothermal snow melting
下载PDF
Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
3
作者 李耀隆 李松远 +1 位作者 王美芬 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期66-69,共4页
Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with te... Controlling mass transportation using intrinsic mechanisms is a challenging topic in nanotechnology.Herein,we employ molecular dynamics simulations to investigate the mass transport inside carbon nanotubes(CNT)with temperature gradients,specifically the effects of adding a static carbon hoop to the outside of a CNT on the transport of a nanomotor inside the CNT.We reveal that the underlying mechanism is the uneven potential energy created by the hoops,i.e.,the hoop outside the CNT forms potential energy barriers or wells that affect mass transport inside the CNT.This fundamental control of directional mass transportation may lead to promising routes for nanoscale actuation and energy conversion. 展开更多
关键词 molecular dynamics thermal drive nanotube hoop mass transport
下载PDF
Thermally Conductive and UV-EMI Shielding Electronic Textiles for Unrestricted and Multifaceted Health Monitoring
4
作者 Yidong Peng Jiancheng Dong +8 位作者 Jiayan Long Yuxi Zhang Xinwei Tang Xi Lin Haoran Liu Tuoqi Liu Wei Fan Tianxi Liu Yunpeng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期149-162,共14页
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,... Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation. 展开更多
关键词 Skin electronics Thermal regulating textiles Electromagnetic interference shielding Ultraviolet proof Health monitoring
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
5
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 Coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field
6
作者 Yasir Khan Safia Akram +3 位作者 Maria Athar Khalid Saeed Alia Razia A.Alameer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1501-1520,共20页
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo... The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification. 展开更多
关键词 Double diffusion convection thermal radiation induced magnetic field peristaltic flow tapered asymmetric channel viscous dissipation Prandtl nanofluid
下载PDF
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
7
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness GRANITE strain rate thermal treatment
下载PDF
Spatial Optimization Strategies for High Temperature Heat Exposure Based on Thermally Vulnerable Populations and Case Studies
8
作者 XIA Xiaoya YANG Xin ZHANG Qi 《Journal of Landscape Research》 2024年第2期1-5,14,共6页
The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on th... The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence. 展开更多
关键词 Thermal vulnerability EXPOSURE High temperature environment Spatial optimization
下载PDF
Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence:QM/MM study
9
作者 张群 王晓菲 +6 位作者 吴智敏 李小芳 张凯 宋玉志 范建忠 王传奎 蔺丽丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期410-419,共10页
Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the exp... Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the explanation of the luminescent properties of(R)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione((R)-ImNCz),which was recently reported[Chemical Engineering Journal 418129167(2021)].The polarizable continuum model(PCM)and the combined quantum mechanics and molecular mechanics(QM/MM)method are adopted in simulation of the property of the molecule in the gas phase,solvated in acetonitrile and in aggregation states.It is found that large spin–orbit coupling(SOC)constants and a smaller energy gap between the first singlet excited state and the first triplet excited state(△E_(st))in prism-like single crystals(SC_(p)-form)are responsible for the TADF of(R)-lmNCz,while no TADF is found in block-like single crystals(SC_(b)-form)with a larger △E_(st).The multiple ultralong phosphorescence(UOP)peaks in the spectrum are of complex origins,and they are related not only to ImNCz but also to a minor amount of impurities(ImNBd)in the crystal prepared in the laboratory.The dimer has similar phosphorescence emission wavelengths to the(R)-lmNCz-SC_(p) monomers.The complex composed of(R)-lmNCz and(R)-lmNBd contributes to the phosphorescent emission peak at about 600 nm,and the phosphorescent emission peak at about 650 nm is generated by(R)-lmNBd.This indicates that the impurity could also contribute to emission in molecular crystals.The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters. 展开更多
关键词 organic light-emitting diodes thermally activated delayed fluorescence ultralong organic phosphorescence aggregation mode
下载PDF
Flexible,Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators 被引量:6
10
作者 Ying Lin Qi Kang +4 位作者 Yijie Liu Yingke Zhu Pingkai Jiang Yiu‑Wing Mai Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期1-15,共15页
Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat ... Thermal management has become a crucial problem for high-power-density equipment and devices.Phase change materials(PCMs)have great prospects in thermal management applications because of their large capacity of heat storage and isothermal behavior during phase transition.However,low intrinsic thermal conductivity,ease of leakage,and lack of flexibility severely limit their applications.Solving one of these problems often comes at the expense of other performance of the PCMs.In this work,we report core–sheath structured phase change nanocomposites(PCNs)with an aligned and interconnected boron nitride nanosheet network by combining coaxial electrospinning,electrostatic spraying,and hot-pressing.The advanced PCN films exhibit an ultrahigh thermal conductivity of 28.3 W m^(-1)K^(-1)at a low BNNS loading(i.e.,32 wt%),which thereby endows the PCNs with high enthalpy(>101 J g^(-1)),outstanding ductility(>40%)and improved fire retardancy.Therefore,our core–sheath strategies successfully balance the trade-off between thermal conductivity,flexibility,and phase change enthalpy of PCMs.Further,the PCNs provide powerful cooling solutions on 5G base station chips and thermoelectric generators,displaying promising thermal management applications on high-power-density equipment and thermoelectric conversion devices. 展开更多
关键词 Coaxial electrospinning Boron nitride nanosheets Phase change nanocomposites Thermal conductivity Thermal management
下载PDF
Hydrothermal Systems Characterized by Crustal Thermally-dominated Structures of Southeastern China 被引量:3
11
作者 WANG Guiling GAN Haonan +5 位作者 LIN Wenjing YUE Gaofan YAN Xiaoxue LI Tingxin ZHANG Wei MA Feng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1003-1013,共11页
Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction... Southeastern China(SE China)is located in the Pacific tectonic domain and has experienced a series of tectono-magmatic events induced by the subduction of the Paleo-Pacific Plate since the late Mesozoic.The subduction formed a series of NE-NNE oriented faults under a NW-SE regional stress field,along which a number of thermal springs occur.Previous studies have focused on the genesis mechanism of specific geothermal fields in SE China,but the general characteristics of hydrothermal systems in SE China remains unclear.In this study,we investigate the correlation between geothermal activity,hydrochemical type and regional faults by studying the distribution of hydrothermal activity and geochemical properties of typical hydrothermal systems in SE China.The hydrothermal systems in SE China have a crustal thermally-dominated structural origin unique to the specific geological and tectonic conditions of the Eurasian Plate margin.The upwelling of the asthenosphere and the widespread granitoids with high radiogenic heat production in SE China provide major heat sources for regional geothermal anomalies.The NE-oriented crustal thermally-dominated faults are critical for the formation of geothermal anomalies and NW-oriented extensional faults have created favorable conditions for meteoric water infiltration,transportation and the formation of thermal springs. 展开更多
关键词 hydrothermal system geothermal reservoir geothermal activity thermal lithosphere Southeastern China
下载PDF
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection 被引量:2
12
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative Poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
Cerium Methacrylate Assisted Preparation of Highly Thermally Conductive and Anticorrosive Multifunctional Coatings for Heat Conduction Metals Protection
13
作者 Fei Xu Peng Ye +7 位作者 Jianwen Peng Haolei Geng Yexiang Cui Di Bao Renjie Lu Hongyu Zhu Yanji Zhu Huaiyuan Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期172-184,共13页
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive... Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection. 展开更多
关键词 Epoxy coatings Thermal conductivity ANTI-CORROSION HYDROPHOBICITY Cerium methacrylate
下载PDF
Thermally Chargeable Proton Capacitor Based on Redox-Active Effect for Energy Storage and Low-Grade Heat Conversion
14
作者 Yufeng An Zhiwei Li +4 位作者 Yao Sun Zhijie Chen Jiangmin Jiang Hui Dou Xiaogang Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期384-391,共8页
Thermal energy is abundantly available in our daily life and industrial production,and especially,low-grade heat is often regarded as a byproduct.Collecting and utilizing this ignored energy by low-cost and simple tec... Thermal energy is abundantly available in our daily life and industrial production,and especially,low-grade heat is often regarded as a byproduct.Collecting and utilizing this ignored energy by low-cost and simple technologies may become a smart countermeasure to relieve the energy crisis.Here,a unique device has been demonstrated to achieve high value-added conversion of low-grade heat by introducing redox-active organic alizarin(AZ)onto N-doped hollow carbon nanofibers(N–HCNF)surface.As-prepared N–HCNF/AZ can deliver a high specific capacitance of 514.3 F g^(-1)(at 1 A g^(-1))and an outstanding rate capability of 60.3%even at 50 A g^(-1).Meanwhile,the assembled symmetric proton capacitor can deliver a high energy density of 28.0 Wh kg^(-1) at 350.0 W kg^(-1) and a maximum power density of 35.0 kW kg^(-1) at 17.0 Wh kg^(-1).Significantly,the thermally chargeable proton capacitors can attain a surprisingly high Seebeck coefficient of 15.3 mV K^(-1) and a power factor of 6.02µW g^(-1).Taking advantage of such high performance,a satisfying open-circuit voltage of 481.0 mV with a temperature difference of 54 K is achieved.This research provides new insights into construction of high value-added energy systems requiring high electrochemical performances. 展开更多
关键词 capacitors low-grade heat redox-active effect thermal chargeability
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction
15
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
Breaking Through Bottlenecks for Thermally Conductive Polymer Composites:A Perspective for Intrinsic Thermal Conductivity,Interfacial Thermal Resistance and Theoretics 被引量:19
16
作者 Junwei Gu Kunpeng Ruan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期118-126,共9页
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va... Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites. 展开更多
关键词 thermally conductive polymer composites Intrinsic thermal conductivity Interfacial thermal resistance Thermal conduction models Thermal conduction mechanisms
下载PDF
Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge 被引量:20
17
作者 XIAO Ben-yi LIU Jun-xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期6-12,共7页
Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under differen... Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121℃ and 50℃ were 12.23 ml/g VS(most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature. 展开更多
关键词 anaerobic fermentation hydrogen production sewage sludge thermally pretreated temperature
下载PDF
Emerging Flexible Thermally Conductive Films:Mechanism,Fabrication,Application 被引量:7
18
作者 Chang‑Ping Feng Fang Wei +7 位作者 Kai‑Yin Sun Yan Wang Hong‑Bo Lan Hong‑Jing Shang Fa‑Zhu Ding Lu Bai Jie Yang Wei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期24-57,共34页
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy ... Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed. 展开更多
关键词 Thermal conductivity Flexible thermally conductive films Heat transfer mechanism Interface thermal resistance Thermal management applications
下载PDF
PREPARATION OF MICROPOROUS ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) BY THERMALLY INDUCED PHASE SEPARATION OF A UHMWPE/LIQUID PARAFFIN MIXTURE 被引量:7
19
作者 沈烈 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第6期653-657,共5页
Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UH... Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UHMWPE. Small angle laser light scattering (SALLS) and differential scanning calorimetry (DSC) were used to determine the phase separation temperatures,i.e.the cloud points and the dynamic crystallization temperatures,respectively.It was found that the cloudI points were coincident with the cryst... 展开更多
关键词 Ultra high molecular weight polyethylene thermally induced phase separation Liquid paraffin.
下载PDF
Fabrication of poly(vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent 被引量:5
20
作者 Xiaozu Wang Xiaogang Li +6 位作者 Juan Yue Yangming Cheng Ke Xu Qian Wang Fan Fan Zhaohui Wang Zhaoliang Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1415-1423,共9页
Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase s... Ionic liquid(IL),1-butyl-3-methylimidazolium hexafluorophosphate([BMIM]PF6)as a new and environmentally friendly diluent was introduced to prepare poly(vinylidene fluoride)(PVDF)membranes via thermally induced phase separation(TIPS).Phase diagram of PVDF/[BMIM]PF6 was measured.The effects of polymer concentration and quenching temperature on the morphologies,properties,and performances of the PVDF membranes were investigated.When the polymer concentration was 15 wt%,the pure water flux of the fabricated membrane was up to nearly 2000 L·m-2·h-1,along with adequate mechanical strength.With the increasing of PVDF concentration and quenching temperature,mean pore size and water permeability of the membrane decreased.SEM results showed that PVDF membranes manufactured by ionic liquid(BMIm PF6)presented spherulite structure.And the PVDF membranes were represented asβphase by XRD and FTIR characterization.It provides a new way to prepare PVDF membranes with piezoelectric properties. 展开更多
关键词 Ionic liquid Poly(vinylidene fluoride)membrane thermally induced phase separation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部