期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transformation of minerals at the boundary of magma-coal contact zone:case study from Wolonghu Coal Mine, Huaibei Coalfield, China 被引量:2
1
作者 Xing Chen Liugen Zheng +1 位作者 Yalin Jiang Chunlu Jiang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期168-175,共8页
Mesozoic and Cenozoic magma activity in the Wolong Lake mining area of Huaibei is frequent,and the degree of magma intrusion into coal seams remarkable.On the one hand,magma intrusion affects the utilization of coal r... Mesozoic and Cenozoic magma activity in the Wolong Lake mining area of Huaibei is frequent,and the degree of magma intrusion into coal seams remarkable.On the one hand,magma intrusion affects the utilization of coal resources;on the other hand,the macro and trace elements in coal are redistributed to form new mineral types.This study uses the Wolong Lake magma intrusion coal seam as a research object.The mineral paragenesis for igneous rock,coke,and thermally-altered coal in an igneous intrusion zone is studied using SEM,XRD,and Raman spectroscopy.During igneous intrusion,the temperature and pressure of igneous rock metamorphose ambient low-rank coal to high-rank coal and coke.The response mechanism of minerals and trace elements to magmatic intrusion is discussed.The results are:①SEM analysis shows that ankerite and pyrite are formed from magma intrusion.Both minerals are strongly developed in the magma-coal contact zone,and less well developed in thermally-altered coal.②XRD analysis shows that igneous intrusion strongly influences the types and content of minerals in coke and thermally-altered coal.In addition to the increase amounts of ankerite and pyrite,chlorite,serpentine,and muscovite,and other secondary minerals,are generated following igneous intrusion.③Raman analysis suggests that thermally-altered coal possesses the characteristics of both pyrite and coke.Coke from the magma-coal boundary zone possesses the typical characteristics of pyrite.Igneous rock contains a mineral similar to pyrite,confirmed by both having similar Raman peaks.The scattering intensity of Ag indicates that the formation pressure of pyrite increases from thermally-altered coal via the boundary between the coke zone and the igneous rock. 展开更多
关键词 thermally-altered coal Mineral Igneous intrusion Raman spectroscopy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部